Skip to main content
Log in

A new zwitterionic nano-titania supported Keggin phosphotungstic heteropolyacid: an efficient and recyclable heterogeneous nanocatalyst for the synthesis of 2,4,5-triaryl substituted imidazoles

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A novel type of zwitterionic nano-titana supported Keggin-structured phosphotungstic acid (HPW) has been prepared by its immobilization onto the surface of n-TiO2–NH2 which had been already synthesized by covalent grafting of 2,4-toluene diisocyanate to nano-TiO2, followed by reduction. The synthesized heterogeneous acid catalyst was characterized by Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy, thermogravimetric analysis, energy-dispersive X-ray spectroscopy analysis and Brunauer–Emmett–Teller analyses. The n-TiO2–NH2/HPW exhibits good catalytic activity in the synthesis of 2,4,5-triaryl substituted imidazoles. The optimal synthesis conditions were achieved by the combination of response surface methodology and central composite design. More importantly, the heterogeneous catalyst could be recycled at least six times with only a modest decrease in catalytic rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Scheme 3
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bell AT (2003) Science 299:1688–1691

    Article  CAS  Google Scholar 

  2. Corma A, Garcia H (2003) Chem Rev 103:4307–4366

    Article  CAS  Google Scholar 

  3. Somorjai GA, McCrea K (2001) Appl Catal A 222:3–18

    Article  CAS  Google Scholar 

  4. You K, Deng R, Jian J, Liu P, Ai Q, Luo HA (2015) RSC Adv 5:73083–73090

    Article  CAS  Google Scholar 

  5. Eren B, Gumus H (2015) React Kinet Mech Cat 114:571–582

    Article  CAS  Google Scholar 

  6. Ladera RM, Ojeda M, Fierro JLG, Rojas S (2015) Catal Sci Tech 5:484–491

    Article  CAS  Google Scholar 

  7. Varişli D, Tokay KC, ÇİFTÇİ A, DOĞU T, DOĞU G (2009) Turk J Chem 33:355–366

    Google Scholar 

  8. Wu S, Liu P, Leng Y, Wang J (2009) Catal Lett 132:500–505

    Article  CAS  Google Scholar 

  9. Wu S, Wang J, Zhang W, Ren X (2008) Catal Lett 125:308–314

    Article  CAS  Google Scholar 

  10. Chang-gen F, Hai-ru S (2012) Chem Res Chin Univ 28:366–370

    Google Scholar 

  11. Duan X, Liu Y, Zhao Q, Wang X, Li S (2013) RSC Adv 3:13748–13755

    Article  CAS  Google Scholar 

  12. Huang M, Chu W, Liao X, Dai X (2010) Chin Sci Bull 55:2652–2656

    Article  CAS  Google Scholar 

  13. Tarlani A, Abedini M, Nemati A, Khabaz M, Amini MM (2006) J Colloid Interface Sci 303:32–38

    Article  CAS  Google Scholar 

  14. Bamoharram FF, Niknezhad SH, Baharara J, Ayati A, Ebrahimi M, Heravi MM (2014) J Nanostruct chem 4:1–6

    Google Scholar 

  15. Kala Raj NK, Deshpande SS, Ingle RH, Raja T, Manikandan P (2004) Catal Lett 98:217–224

    Article  Google Scholar 

  16. Shamsi T, Amoozadeh A, Sajjadi SM, Tabrizian E (2016) Appl Organomet Chem. doi:10.1002/aoc.3636

    Google Scholar 

  17. Tabrizian E, Amoozadeh A (2016) Catal Sci Tech 6:6267–6276

    Article  CAS  Google Scholar 

  18. Tabrizian E, Amoozadeh A (2016) RSC Adv 6:96606–96615

    Article  CAS  Google Scholar 

  19. Tabrizian E, Amoozadeh A, Rahmani S (2016) RSC Adv 6:21854–21864

    Article  CAS  Google Scholar 

  20. Tabrizian E, Amoozadeh A, Shamsi T (2016) React Kinet Mech Catal 119:245–258

    Article  CAS  Google Scholar 

  21. Ghasemi M, Amoozadeh A, Kowsari E (2016) React Kinet Mech Catal. doi:10.1007/s11144-016-1114-6

    Google Scholar 

  22. Bitaraf M, Amoozadeh A, Otokesh S (2016) J Chin Chem Soc 63:336–344

    Article  CAS  Google Scholar 

  23. Tauler R, Walczak B, Brown SD (2009) Comprehensive chemometrics: chemical and biochemical data analysis. Elsevier, Amsterdam

    Google Scholar 

  24. Chen J, Liu M, Zhang L, Zhang J, Jin L (2003) Water Res 37:3815–3820

    Article  CAS  Google Scholar 

  25. Ou B, Li D, Liu Q, Zhou Z, Liao B (2012) Mater Chem Phys 135:1104–1107

    Article  CAS  Google Scholar 

  26. Amoozadeh A, Golian S, Rahmani S (2015) RSC Adv 5:45974–45982

    Article  CAS  Google Scholar 

  27. Amoozadeh A, Rahmani S (2015) J Mol Catal A 396:96–107

    Article  CAS  Google Scholar 

  28. Amoozadeh A, Rahmani S, Bitaraf M, Abadi FB, Tabrizian E (2016) New J Chem 40:770–780

    Article  CAS  Google Scholar 

  29. Rahmani S, Amoozadeh A, Kolvari E (2014) Catal Commun 56:184–188

    Article  CAS  Google Scholar 

  30. Amoozadeh A, Rahmani S, Hafezi M, Tabrizian E, Imanifar E, Zolfagharkhani F (2016) React Kinet Mech Catal 117:365–377

    Article  CAS  Google Scholar 

  31. Alahmadi SM, Mohamad S, Jamil Maah M (2013) Adv Mater Sci Eng. doi:10.1155/2013/634863

    Google Scholar 

  32. Chun YS, Ha K, Lee Y-J, Lee JS, Kim HS, Park YS, Yoon KB (2002) Chem Commun 17:1846–1847

    Article  Google Scholar 

  33. Yang M, Gao Y, He J, Li H (2007) Express Polym Lett 1:433–442

    Article  CAS  Google Scholar 

  34. Venkatachalam N, Palanichamy M, Murugesan V (2007) J Mol Catal A 273:177–185

    Article  CAS  Google Scholar 

  35. Solymosi F, Raskó J (1980) J Catal 63:217–225

    Article  CAS  Google Scholar 

  36. Zhang L, Jin Q, Shan L, Liu Y, Wang X, Huang J (2010) Appl Clay Sci 47:229–234

    Article  CAS  Google Scholar 

  37. Tayebee R, Amini M, Akbari M, Aliakbari A (2015) Dalton Trans 44:9596–9609

    Article  CAS  Google Scholar 

  38. Pavia DL, Lampman GM, Kriz GS, Vyvyan JA (2008) Introduction to spectroscopy. Cengage Learning, Boston

    Google Scholar 

  39. Cullity BD, Stock SR (2001) Elements of X-ray diffraction. Prentice Hall, Upper Saddle River

    Google Scholar 

  40. Atghia SV, Beigbaghlou SS (2013) J Nanostructure Chem 3:1–8

    Article  Google Scholar 

  41. Ahn J, Chung W-J, Pinnau I, Song J, Du N, Robertson GP, Guiver MD (2010) J Membr Sci 346:280–287

    Article  CAS  Google Scholar 

  42. AL-Adilee KJ, Abass AK, Taher. AM (2016) J Mol Struct 1108:378–397

    Article  CAS  Google Scholar 

  43. Ball RJ, El-Turki A, Allen GC (2011) Mater Sci Eng 528:3193–3199

    Article  Google Scholar 

  44. Georgieva V, Zvezdova D, Vlaev L (2012) Chem Cent J 6:1–10

    Article  Google Scholar 

  45. Gonzaga CC, Cesar PF, Okada CY, Fredericci C, Beneduce Neto F, Yoshimura HN (2008) Mater Res 11:301–306

    Article  CAS  Google Scholar 

  46. Zera E, Perolo A, Campostrini R, Li W, Sorarù GD (2015) J Eur Ceram Soc 35:3295–3302

    Article  Google Scholar 

  47. Dubois C, Rajabian M, Rodrigue D (2006) Polym Eng Sci 46:360–371

    Article  CAS  Google Scholar 

  48. Song H-J, Zhang Z-Z, Men X-H (2006) Surf Coat Technol 201:3767–3774

    Article  CAS  Google Scholar 

  49. Balalaie S, Arabanian A (2000) Green Chem 2:274–276

    Article  CAS  Google Scholar 

  50. Karimi AR, Alimohammadi Z, Azizian J, Mohammadi AA, Mohammadizadeh M (2006) Catal Commun 7:728–732

    Article  CAS  Google Scholar 

  51. Karimi-Jaberi Z, Barekat M (2010) Chin Chem Lett 21:1183–1186

    Article  CAS  Google Scholar 

  52. Mirjalili B, Bamoniri A, Zamani L (2012) Sci Iran 19:565–568

    Article  CAS  Google Scholar 

  53. Wang L, Woods KW, Li Q, Barr KJ, McCroskey RW, Hannick SM, Gherke L, Credo RB, Hui Y-H, Marsh K (2002) J Med Chem 45:1697–1711

    Article  CAS  Google Scholar 

  54. Morgan E (1995) Chemometrics: experimental design. Wiley, Hoboken

    Google Scholar 

  55. Box GE, Draper NR (1987) Empirical model-building and response surfaces. Wiley, New York

    Google Scholar 

  56. Pourshamsian K, Montazeri N, Asadyan S (2014) J Appl Chem Res 8:53–59

    Google Scholar 

  57. Niralwad KS, Shingate BB, Shingare MS (2011) J Heterocycl Chem 48:742–745

    Article  CAS  Google Scholar 

  58. Marzouk AA, Abbasov VM, Talybov AH, Mohamed SK (2013) World J Org Chem 1:6–10

    Google Scholar 

  59. Nemati F, Hosseini MM, Kiani H (2013) J Saudi Chem Soc. doi:10.1016/j.jscs.2013.02.004

    Google Scholar 

  60. Bamoniri A, Mirjalili B, Nazemian S, Mahabadi N (2014) Bulg Chem Commun 46:79–84

    CAS  Google Scholar 

  61. Singh P, Dubey R, Tiwari S, Khanna R, Tewari A (2015) Sci Iran Trans C Chem Chem Eng 22:925

    Google Scholar 

  62. Gharib A, Noroozi Pesyan N, Jahangir M, Roshani M, Bakhtiari L, Mohadeszadeh S (2014) Bulg Chem Commun 46:215–222

    CAS  Google Scholar 

  63. Karimi AR, Alimohammadi Z, Amini MM (2010) Mol Divers 14:635–641

    Article  CAS  Google Scholar 

  64. Deng X, Zhou Z, Zhang A, Xie G (2013) Res Chem Intermed 39:1101–1108

    Article  CAS  Google Scholar 

  65. Shaterian HR, Ranjbar M (2011) J Mol Liq 160:40–49

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the Faculty of chemistry of Semnan University for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Amoozadeh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 7821 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamsi, T., Amoozadeh, A., Tabrizian, E. et al. A new zwitterionic nano-titania supported Keggin phosphotungstic heteropolyacid: an efficient and recyclable heterogeneous nanocatalyst for the synthesis of 2,4,5-triaryl substituted imidazoles. Reac Kinet Mech Cat 121, 505–522 (2017). https://doi.org/10.1007/s11144-017-1177-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-017-1177-z

Keywords

Navigation