Skip to main content
Log in

Nanosilica supported molybdenum catalyst for the epoxidation of olefins under thermal and ultrasonic irradiation conditions

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The chemical modification of spherical sub-100 nm silica nanoparticles with 3-aminopropyltriethoxysilane and subsequent reaction with acacen (the Schiff base ligand derived from the condensation of acetylacetone and ethylenediamine) and MoO2(acac)2 precursor produced MoO2acacen@APTSNPs. The characterization of the obtained material was performed by Fourier transform infrared, inductively coupled plasma optical emission spectroscopy, nitrogen adsorption–desorption measurements, thermogravimetric analysis, and scanning electron microscopy, which indicated that the molybdenum complex is successfully supported on the SCMNPs support. The epoxidation of olefins with tert-butyl hydroperoxide in the presence of MoO2acacen@APTSNPs was carried out with good activities and selectivities under reflux and ultrasonic irradiation conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yudin AK (2006) Aziridines and epoxides in organic synthesis. Wiley, New York

    Book  Google Scholar 

  2. Gladysz JA (2002) Chem Rev 102:3215–3216

    Article  CAS  Google Scholar 

  3. Sheldon RA, Arends I, Hanefeld U (2007) Green chemistry and catalysis. Wiley, New York

    Book  Google Scholar 

  4. Leadbeater NE, Marco M (2002) Chem Rev 102:3217–3274

    Article  CAS  Google Scholar 

  5. Dioos BML, Vankelecom IFJ, Jacobs PA (2006) Adv Synth Catal 348:1413–1446

    Article  CAS  Google Scholar 

  6. Wight AP, Davis ME (2002) Chem Rev 102:3589–3614

    Article  CAS  Google Scholar 

  7. De Vos DE, Dams M, Sels BF, Jacobs PA (2002) Chem Rev 102:3615–3640

    Article  Google Scholar 

  8. Masteri-Farahani M, Farzaneh F, Ghandi M (2006) J Mol Catal A: Chem 248:53–60

    Article  CAS  Google Scholar 

  9. Zhou X-G, Yu X-Q, Huang J-S,Che C-M, LiS-G, LiL-S (1999) Chem Commun 1789–1790

  10. Maurya MR, Titinchi SJ, Chand S (2003) J Mol Catal A: Chem 193:165–176

    Article  CAS  Google Scholar 

  11. Renehan MF, Schanz H-J, McGarrigle EM, Dalton CT, Daly AM, Gilheany DG (2005) J Mol Catal A: Chem 231:205–220

    Article  CAS  Google Scholar 

  12. Abednatanzi S, Abbasi A, Masteri-Farahani M (2015) J Mol Catal A: Chem 399:10–17

    Article  CAS  Google Scholar 

  13. Mohammadikish M, Masteri-Farahani M, Mahdavi S (2014) J Magn Magn Mater 354:317–323

    Article  CAS  Google Scholar 

  14. Leng Y, Liu J, Zhang C, Jiang P (2014) Catal Sci Technol 4:997–1004

    Article  CAS  Google Scholar 

  15. Judmaier ME, Holzer C, Volpe M, Mösch-Zanetti NC (2012) Inorg Chem 51:9956–9966

    Article  CAS  Google Scholar 

  16. Zhang J, Jiang P, Shen Y, Zhang W, Li X (2015) Microporous Mesoporous Mater 206:161–169

    Article  CAS  Google Scholar 

  17. Bagherzadeh M, Zare M, Amini M, Salemnoush T, Akbayrak S, Özkar S (2014) J Mol Catal A: Chem 395:470–480

    Article  CAS  Google Scholar 

  18. Stöber W, Fink A, Bohn E (1968) J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  19. Giesche H, Matijević E (1991) Dyes Pigments 17:323–340

    Article  CAS  Google Scholar 

  20. Winnik FM, Keoshkerian B, Fuller JR, Hofstra PG (1990) Dyes Pigments 14:101–112

    Article  CAS  Google Scholar 

  21. Bringley JF, Penner TL, Wang R, Harder JF, Harrison WJ, Buonemani L (2008) J Colloid Interface Sci 320:132–139

    Article  CAS  Google Scholar 

  22. Choi H, Chen I-W (2003) J Colloid Interface Sci 258:435–437

    Article  CAS  Google Scholar 

  23. Korach Ł, Czaja K, Kovaleva NY (2008) Eur Polym J 44:889–903

    Article  CAS  Google Scholar 

  24. Mason TJ, Peters D (2002) Practical sonochemistry: power ultrasound uses and applications. Woodhead Publishing, Cambridge

    Book  Google Scholar 

  25. Gogate PR (2008) Chem Eng Process Process Intensifi 47:515–527

    Article  CAS  Google Scholar 

  26. Thompson L, Doraiswamy L (1999) Ind Eng Chem Res 38:1215–1249

    Article  CAS  Google Scholar 

  27. Huang Y, Pemberton JE (2010) Colloids Surface A Physicochem Eng 360:175–183

    Article  CAS  Google Scholar 

  28. Coleman W, Taylor L (1971) Inorg Chem 10:2195–2199

    Article  CAS  Google Scholar 

  29. Chen GJ, McDonald JW, Newton W (1976) Inorg Chem 15:2612–2615

    Article  CAS  Google Scholar 

  30. Bagheri M, Masteri-Farahani M, Ghorbani M (2013) J Magn Magn Mater 327:58–63

    Article  CAS  Google Scholar 

  31. Topich J (1981) Inorg Chem 20:3704–3707

    Article  CAS  Google Scholar 

  32. Gregg S, Sing K (1982) Surface area and porosity. Academic Press, New York, p 248

    Google Scholar 

  33. Saikia L, Srinivas D, Ratnasamy P (2006) Appl Catal A Gen 309:144–154

    Article  CAS  Google Scholar 

  34. Pérez-Quintanilla D, Sánchez A, del Hierro I, Fajardo M, Sierra I (2009) J Hazard Mater 166:1449–1458

    Article  Google Scholar 

  35. Masteri-Farahani M (2010) J Mol Catal A: Chem 316:45–51

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Masteri-Farahani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tadjarodi, A., Mirzakhani, S. & Masteri-Farahani, M. Nanosilica supported molybdenum catalyst for the epoxidation of olefins under thermal and ultrasonic irradiation conditions. Reac Kinet Mech Cat 120, 593–603 (2017). https://doi.org/10.1007/s11144-016-1129-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-016-1129-z

Keywords

Navigation