Skip to main content
Log in

Heterogeneous catalytic Wacker oxidation of ethylene over oxide-supported Pd/VOx catalysts: the support effect

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript


This paper concerns the selective oxidation of ethylene (EE) to acetaldehyde (AL) and acetic acid (AA) by oxygen in the presence of steam over non-supported Pd/V2O5 catalyst and over Pd/V2O5 catalysts supported by SiO2, TiO2, γ-Al2O3, and α-Al2O3. A flow-through microreactor was applied at atmospheric pressure in the temperature range of 150–200 °C. The WHSV of EE was 0.17 or 0.84 h−1. The vanadia content of the supported catalysts was 17 wt%, whereas their Pd content was 0.8 wt%. The reducibility of vanadia was determined using temperature-programmed reduction by hydrogen (H2-TPR). Applying ultraviolet–visible (UV–Vis) spectroscopy and X-ray diffractometry (XRD), different vanadia species were identified over different supports. In the Pd/V2O5/α-Al2O3 catalyst, the vanadia had the same structure as in the Pd/V2O5 preparation. Even the low surface area α-Al2O3 support affects the Wacker oxidation activity of the catalyst. Vanadia deposited on the surface of TiO2 or γ-Al2O3 forms easily reducible polymeric species. In interaction with Pd, this polymeric species is responsible for the total oxidation EE to CO2. Palladium, bound to the surface of bulk V2O5 or to monomeric vanadate-like species on silica, forms Pd/VOx redox pairs, which are active and selective catalytic centers of the Wacker reaction. The Wacker mechanism was verified by test reactions, where one of the four components, such as Pd, V2O5, O2, or H2O, was left out of the reacting system. In the absence of any of the components, no selective catalytic partial EE oxidation proceeded, indicating that the Wacker mechanism could not operate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others


  1. Arpe HJ (2003) Ethanol. Industrial Organic Chemistry, 4th edn. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 193–198

    Google Scholar 

  2. Angelici C, Weckhuysen BM, Bruijnincx PCA (2013) Chem Sus Chem 6:1–21

    Article  Google Scholar 

  3. Makshina EV, Dusselier M, Janssens W, Degrève J, Jacobs PA, Sels BF (2014) Chem Soc Rev 43:7917–7953

    Article  CAS  Google Scholar 

  4. Lebedev IE (1930) GB 331482

  5. Ostromislenskiy J (1915) J Russ Phys Chem Soc 47:1472–1506

    Google Scholar 

  6. Niiyama H, Morii S, Echigoya E (1972) Bull Chem Soc Jpn 45:655–659

    Article  CAS  Google Scholar 

  7. Han Z, Li X, Zhang M, Liu Z, Gao M (2015) RSC Adv 5:103982–103988

    Article  CAS  Google Scholar 

  8. Kim TW, Kim JW, Kim SY, Chae HJ, Kim JR, Jeong SY, Kim CU (2015) Chem Eng J 278:217–223

    Article  CAS  Google Scholar 

  9. Ushikubo T, Kurashige M, Koyanagi T, Ito H, Watanabe Y (2000) Catal Lett 69:83–87

    Article  CAS  Google Scholar 

  10. Hagemeyer HJ (2002) Acetaldehyde, in Kirk-Othmer encyclopedia of chemical technology, vol 1. Online edn. Wiley, New York, pp 99–114

    Google Scholar 

  11. Espeel PH, Tielen MC, Jacobs PA (1991) Chem Commun 10:669–671

    Article  Google Scholar 

  12. Mitsudome T, Umetani T, Mori K, Mizugaki T, Ebitani K, Kaneda K (2006) Terahedron Letters 47:1425–1428

    Article  CAS  Google Scholar 

  13. Stobbe-Kreemers AW, Makkee M, Scholten JJF (1997) Appl Catal A 156:219–238

    Article  CAS  Google Scholar 

  14. Li M, Shen J (2001) React Kinet Catal Lett 72:263–267

    Article  CAS  Google Scholar 

  15. Izumi Y, Fujii Y, Urabe K (1984) J Catal 85:284–286

    Article  CAS  Google Scholar 

  16. Seoane JL, Boutry P, Montarnal R (1980) J Catal 63:182–190

    Article  CAS  Google Scholar 

  17. Tian H, Ross EI, Wachs IE (2006) J Phys Chem B 110:9593–9600

    Article  CAS  Google Scholar 

  18. Smidt J, Hafner W, Jira R, Sieber R, Sedlmeier J, Sabel A (1962) Angew Chem Int Ed 1:80–88

    Article  Google Scholar 

  19. Mitsudome T, Mizumoto K, Mizugaki T, Jitsukawa K, Kaneda K (2010) Angew Chem 122:1260–1262

    Article  Google Scholar 

  20. Wachs IE, Weckhuysen BM (1997) Appl Catal A 157:67–90

    Article  CAS  Google Scholar 

  21. Bond GC, Tahir SF (1991) Appl Catal 71:1–31

    Article  CAS  Google Scholar 

  22. Deo G, Wachs IE (1994) J Catal 146:323–334

    Article  CAS  Google Scholar 

  23. Gao X, Wachs IE (2000) J Phys Chem B 104:1261–1268

    Article  CAS  Google Scholar 

  24. Zhang C, Li Y, Wang Y, He H (2014) Environ Sci Technol 48:5816–5822

    Article  CAS  Google Scholar 

  25. Van der Heide E, Zwinkels M, Gerritsen A, Scholten J (1992) Appl Catal A 86:181–198

    Article  Google Scholar 

  26. Barthos R, Hegyessy A, Novodarszki G, Pászti Z, Valyon J (2016) Appl Catal A. doi:10.1016/j.apcata.2016.10.024

    Google Scholar 

Download references


This work was financially supported by the Hungarian Scientific Research Fund, Hungary (OTKA, Contract No. K 100411).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Róbert Barthos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barthos, R., Novodárszki, G. & Valyon, J. Heterogeneous catalytic Wacker oxidation of ethylene over oxide-supported Pd/VOx catalysts: the support effect. Reac Kinet Mech Cat 121, 17–29 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: