Skip to main content
Log in

Product compositions from catalytic hydroprocessing of low temperature coal tar distillate over three commercial catalysts

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Catalytic hydroprocessing of low temperature coal tar (LTCT) <360 °C distillate was performed over commercial Ni–W/γ-Al2O3, Ni–Mo/γ-Al2O3 and Co–Mo/γ-Al2O3 catalysts in a fixed-bed reactor to produce clean liquid fuel. Experimental feedstock and liquid products were divided into twelve groups based on converted material with the molecules and saturation levels to investigate the effect of catalysts on reaction network of the main compounds in feedstock by GC/MS analysis. Meanwhile, the influence of catalyst component on the product composition like group composition, distribution of carbon number, heteroatom removal, gaseous and oil properties was also investigated. The experimental results showed that phenols were mainly transformed into cycloalkanes and alkylbenzene, while alkyl-naphthalenes were converted to phenyl cycloalkanes and phenyl olefins. In addition, total carbon number in a slightly decreasing tendency. The Ni–W/γ-Al2O3 catalysts showed a higher hydrogenation activity and intermediate carbon number (C9–C16) selectivity, whereas the higher HDN and ring open activity was observed using Ni-Mo/γ-Al2O3 catalyst. The highest percentage of sulfur removal (about 97.8 %) was reached over the Co-Mo/γ-Al2O3 catalyst. Besides, methane was the predominant constituent in the light hydrocarbon gaseous product. And the properties of raw LTCT could be considerably upgraded after hydrotreatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

LTCT:

Low temperature coal tar

GC/MS:

Gas chromatograph/mass spectrometer

LHSV:

Liquid hourly space velocity

NIST:

Institute of Standards and Technology

LCA:

Long-chain alkanes

SCA:

Short-chain alkanes

MCA:

Monocyclic alkanes

BCA:

Bicyclic alkane

AC:

Alkenes and cycloalkenes

AB:

Alkylbenzenes

PCA:

Phenyl cycloalkanes

PO:

Phenyl olefins

AN:

Alkylnaphthalenes

P:

Phenols

OC:

Other oxygen containings

FAB:

Fluorenes, Anthracenes, Biphenyls

HDO:

Hydrodeoxygenation

HDS:

Hydrodesulfurization

HDN:

Hydrodenitrogeneration

References

  1. Zhufeng Y, Xingzhou Z (2005) Coal market outlook in China. Int J Global Energy Issues 24(3–4):211–227

    Article  Google Scholar 

  2. Li C, Suzuki K (2010) Resources, properties and utilization of tar. Resour Conserv Recycl 54(11):905–915

    Article  Google Scholar 

  3. Xie K, Li W, Zhao W (2010) Coal chemical industry and its sustainable development in China. Energy 35(11):4349–4355. doi:10.1016/j.energy.2009.05.029

    Article  CAS  Google Scholar 

  4. Xu J, Yang Y, Li Y-W (2015) Recent development in converting coal to clean fuels in China. Fuel 152:122–130. doi:10.1016/j.fuel.2014.11.059

    Article  CAS  Google Scholar 

  5. Edwards JH, Schluter K, Tyler RJ (1986) Upgrading of flash pyrolysis tars to synthetic crude oil: 3. Overall performance of the two-stage hydrotreating process and characterization of the synthetic crude oil. Fuel 65(2):208–211. doi:10.1016/0016-2361(86)90008-6

    Article  CAS  Google Scholar 

  6. Kusy J, Andel L, Safarova M, Vales J, Ciahotny K (2012) Hydrogenation process of the tar obtained from the pyrolisis of brown coal. Fuel 101:38–44. doi:10.1016/j.fuel.2011.08.016

    Article  CAS  Google Scholar 

  7. Wandas R, Surygala J, Śliwka E (1996) Conversion of cresols and naphthalene in the hydroprocessing of three-component model mixtures simulating fast pyrolysis tars. Fuel 75(6):687–694

    Article  CAS  Google Scholar 

  8. Demirel B, Wiser W, Oblad A, Zmierczak W, Shabtai J (1998) Production of high octane gasoline components by hydroprocessing of coal-derived aromatic hydrocarbons. Fuel 77(4):301–311

    Article  CAS  Google Scholar 

  9. Herod AA, Stokes BJ, Schulten H-R (1993) Coal tar analysis by mass spectrometry—a comparison of methods. Fuel 72(1):31–43. doi:10.1016/0016-2361(93)90372-9

    Article  CAS  Google Scholar 

  10. Wang PF, Jin LJ, Liu JH, Zhu SW, Hu HQ (2013) Analysis of coal tar derived from pyrolysis at different atmospheres. Fuel 104:14–21. doi:10.1016/j.fuel.2010.06.041

    Article  CAS  Google Scholar 

  11. Li D, Li Z, Li WH, Liu QC, Feng ZL, Fan Z (2013) Hydrotreating of low temperature coal tar to produce clean liquid fuels. J Anal Appl Pyrol 100:245–252. doi:10.1016/j.jaap.2013.01.007

    Article  CAS  Google Scholar 

  12. Wailes PC, Bell AP, Triffett ACK, Weigold H, Galbraith MN (1980) Continuous hydrogenation of Yallourn brown-coal tar. Fuel 59(2):128–132. doi:10.1016/0016-2361(80)90054-X

    Article  CAS  Google Scholar 

  13. Wiser WH, Singh S, Qader SA, Hill GR (1970) Catalytic hydrogenation of multiring aromatic coal tar constituents. Indus Eng Chem Product Res Dev 9(3):350–357

    Article  CAS  Google Scholar 

  14. Demirel B, Wiser WH (1997) High conversion (98 %) for the hydrogenation of 1-methylnaphthalene to methyldecalins. Fuel Process Technol 53(1–2):157–169. doi:10.1016/S0378-3820(97)00044-1

    Article  CAS  Google Scholar 

  15. Gilbert G, Weil RC, Hunter RH (1961) Hydrorefining Coal-Tar Naphthalene. Ind Eng Chem 53(12):993–996. doi:10.1021/ie50624a027

    Article  CAS  Google Scholar 

  16. Arribas M, Martınez A (2002) The influence of zeolite acidity for the coupled hydrogenation and ring opening of 1-methylnaphthalene on Pt/USY catalysts. Appl Catal A 230(1):203–217

    Article  CAS  Google Scholar 

  17. Gevert B, Otterstedt J, Massoth F (1987) Kinetics of the HDO of methyl-substituted phenols. Appl Catal 31(1):119–131

    Article  CAS  Google Scholar 

  18. Rosal R, Diez FV, Sastre H (1992) Catalytic hydrogenation of multi ring aromatic hydrocarbons in a coal tar fraction. Ind Eng Chem Res 31(4):1007–1012

    Article  CAS  Google Scholar 

  19. Girgis MJ, Gates BC (1991) Reactivities, reaction networks, and kinetics in high-pressure catalytic hydroprocessing. Ind Eng Chem Res 30(9):2021–2058. doi:10.1021/ie00057a001

    Article  CAS  Google Scholar 

  20. Lapinas AT, Klein MT, Gates BC, Macris A, Lyons JE (1991) Catalytic hydrogenation and hydrocracking of fluorene: reaction pathways, kinetics, and mechanisms. Ind Eng Chem Res 30(1):42–50

    Article  CAS  Google Scholar 

  21. Li X, Zong ZM, Ma WW, Cao J-P, Mayyas M, Wei ZH, Li Y, Yan HL, Wang D, Yang R, Wei X-Y (2015) Multifunctional and highly active Ni/microfiber attapulgite for catalytic hydroconversion of model compounds and coal tars. Fuel Process Technol 134:39–45. doi:10.1016/j.fuproc.2014.12.004

    Article  CAS  Google Scholar 

  22. Lemberton J, Touzeyidio M, Guisnet M (1989) Catalytic hydroprocessing of simulated coal tars: II. Effect of acid catalysts on the hydroconversion of model compounds on a sulphided Ni–Mo/Al2O3 catalyst. Applied catalysis 54(1):101–109

    Article  CAS  Google Scholar 

  23. Lemberton J, Touzeyidio M, Guisnet M (1989) Catalytic hydroprocessing of simulated coal tars: I. Activity of a sulphided ni–mo/Al2o3 catalyst for the hydroconversion of model compounds. Applied catalysis 54(1):91–100

    Article  CAS  Google Scholar 

  24. Lemberton J, Touzeyidio M, Guisnet M (1991) Catalytic hydroconversion of simulated coal tars: III. Activity of sulphided NiMo on alumina-zeolite catalysts for the hydroconversion of model compounds. Appl Catal A 79(1):115–126

    Article  CAS  Google Scholar 

  25. Surygala J, Wandas R, Sliwka E (1994) Hydrogenation of multicomponent mixture simulating fast pyrolysis tar. React Kinet Catal Lett 53(1):217–221

    Article  CAS  Google Scholar 

  26. Dai F, Gong M, Li C, Li Z, Zhang S (2015) New kinetic model of coal tar hydrogenation process via carbon number component approach. Appl Energ 137:265–272

    Article  CAS  Google Scholar 

  27. Li D, Li W, Cui L, Yang X, Zhang M, Yan S (2011) Optimization of processing parameters and macrokinetics for hydrodenitrogenation of coal tar. Adv Sci Lett 4(4–5):1514–1518

    Article  CAS  Google Scholar 

  28. Qader S, Wiser W, Hill G (1968) Kinetics of the Hydroremoval of Sulfur, Oxygen, and Nitrogen from a Low Temperature Coal Tar. Indus Eng Chem Process Des Dev 7(3):390–397

    Article  CAS  Google Scholar 

  29. Sun J, Li D, Yao R, Sun Z, Li X, Li W (2015) Modeling the hydrotreatment of full range medium temperature coal tar by using a lumping kinetic approach. Reac Kinet Mech Cat 114(2):451–471

    Article  CAS  Google Scholar 

  30. Zhu Y, Zhang Y, Dan Y, Yuan Y, Zhang L, Li W, Li D (2015) Optimization of reaction variables and macrokinetics for the hydrodeoxygenation of full range low temperature coal tar. Reac Kinet Mech Cat 116(2):433–450. doi:10.1007/s11144-015-0900-x

    Article  CAS  Google Scholar 

  31. Tang W, Fang MX, Wang HY, Yu PL, Wang QH, Luo ZY (2014) Mild hydrotreatment of low temperature coal tar distillate: Product composition. Chem Eng J 236:529–537. doi:10.1016/j.cej.2013.09.038

    Article  CAS  Google Scholar 

  32. Teo KC, Watkinson AP (1990) Product distributions from catalytic hydrotreating of a coal tar middle distillate. Fuel 69(10):1211–1218

    Article  CAS  Google Scholar 

  33. Kan T, Wang HY, He HX, Li CS, Zhang SJ (2011) Experimental study on two-stage catalytic hydroprocessing of middle-temperature coal tar to clean liquid fuels. Fuel 90(11):3404–3409. doi:10.1016/j.fuel.2011.06.012

    Article  CAS  Google Scholar 

  34. Lei S, Z-h ZHANG, Z-g QIU, Fang G, ZHANG W, ZHAO Lf (2015) Effect of phosphorus modification on the catalytic properties of Mo-Ni/Al2O3 in the hydrodenitrogenation of coal tar. J Fuel Chem Technol 43(1):74–80

    Article  Google Scholar 

  35. Cervantes-Gaxiola ME, Arroyo-Albiter M, Perez-Larios A, Balbuena PB, Espino-Valencia J (2013) Experimental and theoretical study of NiMoW, NiMo, and NiW sulfide catalysts supported on an Al–Ti–Mg mixed oxide during the hydrodesulfurization of dibenzothiophene. Fuel 113:733–743. doi:10.1016/j.fuel.2013.06.041

    Article  CAS  Google Scholar 

  36. Liaw S-J, Keogh RA, Thomas GA, Davis BH (1994) Catalytic hydrotreatment of coal-derived naphtha using commercial catalysts. Energy Fuels 8(3):581–587. doi:10.1021/ef00045a011

    Article  CAS  Google Scholar 

  37. Ferdous D, Dalai AK, Adjaye J (2006) Comparison of product selectivity during hydroprocessing of bitumen derived gas oil in the presence of NiMo/Al2O3 catalyst containing boron and phosphorus. Fuel 85(9):1286–1297. doi:10.1016/j.fuel.2005.11.018

    Article  CAS  Google Scholar 

  38. Legarreta JA, Caballero BM, de Marco I, Chomón MJ, Uría PM (1997) Comparison of the effect of catalysts in coal liquefaction with tetralin and coal tar distillates. Fuel 76(13):1309–1313

    Article  CAS  Google Scholar 

  39. Stiegel GJ, Tischer RE, Polinski LM (1983) Hydroprocessing of solvent-refined coal: effect of catalyst properties. Indus Eng Chem Product Research Dev 22(3):411–420

    Article  CAS  Google Scholar 

  40. Wen WY, Cain E (1984) Catalytic pyrolysis of a coal tar in a fixed-bed reactor. Indus Eng Chem Product Research Dev 23(4):627–637. doi:10.1021/i200027a001

    Article  CAS  Google Scholar 

  41. Šafářová M, Kusý J, Anděl L (2010) Brown coal tar hydrotreatment. J Anal Appl Pyrol 89(2):265–270. doi:10.1016/j.jaap.2010.09.002

    Article  Google Scholar 

  42. Kan T, Sun X, Wang H, Li C, Muhammad U (2012) Production of gasoline and diesel from coal tar via its catalytic hydrogenation in serial fixed beds. Energy Fuels 26(6):3604–3611. doi:10.1021/ef3004398

    Article  CAS  Google Scholar 

  43. Gu Z, Chang N, Hou X, Wang J, Liu Z (2012) Experimental study on the coal tar hydrocracking process in supercritical solvents. Fuel 91(1):33–39. doi:10.1016/j.fuel.2011.07.032

    Article  CAS  Google Scholar 

  44. Han L, Zhang R, Bi J (2009) Experimental investigation of high-temperature coal tar upgrading in supercritical water. Fuel Process Technol 90(2):292–300

    Article  CAS  Google Scholar 

  45. C-x Ma, Zhang R, J-c Bi (2003) Upgrading of coal tar in supercritical water. J Fuel Chem Technol 31(2):103–110

    Google Scholar 

  46. Chang N, Gu Z, Wang Z, Liu Z, Hou X, Wang J (2011) Study of Y zeolite catalysts for coal tar hydro-cracking in supercritical gasoline. J Porous Mat 18(5):589–596

    Article  CAS  Google Scholar 

  47. Chareonpanich M, Zhang ZG, Tomita A (1996) Hydrocracking of Aromatic Hydrocarbons over USY-Zeolite. Energy Fuels 10(4):927–931. doi:10.1021/ef950238m

    Article  CAS  Google Scholar 

  48. Korre SC, Klein MT, Quann RJ (1995) Polynuclear aromatic hydrocarbons hydrogenation. 1. experimental reaction pathways and kinetics. Ind Eng Chem Res 34(1):101–117. doi:10.1021/ie00040a008

    Article  CAS  Google Scholar 

  49. Massoth FE, Politzer P, Concha MC, Murray JS, Jakowski J, Jack S (2006) Catalytic hydrodeoxygenation of methyl-substituted phenols: correlations of kinetic parameters with molecular properties. J Phys Chem B 110(29):14283–14291

    Article  CAS  Google Scholar 

  50. Sullivan RF, Egan CJ, Langlois GE (1964) Hydrocracking of alkylbenzenes and polycyclic aromatic hydrocarbons on acidic catalysts. Evidence for cyclization of the side chains. J Catal 3(2):183–195. doi:10.1016/0021-9517(64)90126-5

    Article  CAS  Google Scholar 

  51. Sullivan R, Egan CJ, Langlois G, Sieg RP (1961) A new reaction that occurs in the hydrocracking of certain aromatic hydrocarbons. J Am Chem Soc 83(5):1156–1160

    Article  CAS  Google Scholar 

  52. Qader SA, Hill GR (1969) Catalytic Hydrocracking. Hydrocracking of a Low Temperature Coal Tar. Industrial & Engineering Chemistry Process Design and Development 8(4):450–455. doi:10.1021/i260032a003

    Article  CAS  Google Scholar 

  53. Qader SA, Hill GR (1969) Catalytic hydrocracking. mechanism of hydrocracking of low temperature coal tar. Indus Eng Chem Process Des Dev 8(4):456–461

    Article  CAS  Google Scholar 

  54. Ding L, Zheng Y, Zhang Z, Ring Z, Chen J (2007) HDS, HDN, HDA, and hydrocracking of model compounds over Mo-Ni catalysts with various acidities. Appl Catal A 319:25–37. doi:10.1016/j.apcata.2006.11.016

    Article  CAS  Google Scholar 

  55. Sun R, Shen S, Zhang D, Ren Y, Fan J (2015) Hydrofining of coal tar light oil to produce high octane gasoline blending components over γ-Al2o3 and η-Al2o3-supported catalysts. Energy Fuels 29(11):7005

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support of the Overall Science and Technology Innovation Project of Shaanxi province (2014KTCL01-09) and Research Fund for the Doctoral Program of Higher Education of China (20126101120013) and Scientific Research Project of the Department of Education of Shaanxi province (14JF026, 15JF031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhong Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, W., Zheng, H., Niu, M. et al. Product compositions from catalytic hydroprocessing of low temperature coal tar distillate over three commercial catalysts. Reac Kinet Mech Cat 119, 491–509 (2016). https://doi.org/10.1007/s11144-016-1068-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-016-1068-8

Keywords

Navigation