Skip to main content
Log in

Study of the transition to higher iodide in the malonic acid Briggs–Rauscher oscillator

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The interesting behavior of the Briggs–Raucher oscillating reaction does not stop with the end of oscillations. Depending on the initial concentrations, the classic mixture with malonic acid may undergo a sudden transition from a state with low [I2] and [I], to a state with high [I2] and [I]. A proposed mechanism involving radical attack on iodomalonic acid and diiodomalonic acid shows qualitative agreement with experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Briggs S, Rauscher WC (1973) An oscillating iodine clock. J Chem Educ 50:496

    Article  CAS  Google Scholar 

  2. Shakhashiri B (1985) Chemical Demonstrations; A Handbook for Teachers of Chemistry. University of Wisconsin Press: Madison 2:248–256

  3. Cooke DO (1980) The hydrogen peroxide-iodic acid-manganese (ii) –acetone oscillating system: further observations. Int J Chem Kinetics 12:683–698

    Article  CAS  Google Scholar 

  4. Furrow SD (1995) Comparison of several substrates in the Briggs–Rauscher oscillating system. J Phys Chem 99:11131–11140

    Article  CAS  Google Scholar 

  5. Furrow SD, Cervellati R, Amadori G (2002) New substrates for the oscillating Briggs–Rauscher reaction. J Phys Chem A 106:5841–5850

    Article  CAS  Google Scholar 

  6. Furrow SD, Cervellati R, Greco E (2012) A Study of the cerium-catalyzed Briggs–Rauscher oscillating reaction. Z Naturforsch 67b:1–9

    Google Scholar 

  7. Vanag VK (1992) A new autocatalytic step in the Briggs–Rauscher reaction. J Chem Biochem Kinet 2:75–83

    CAS  Google Scholar 

  8. Furrow SD, Aurentz DJ (2010) Reactions of iodomalonic acid, diiodomalonic acid, and other organics in the Briggs–Rauscher oscillating system. J Phys Chem A 114:2526–2533

    Article  CAS  Google Scholar 

  9. Furrow SD (2012) A modified recipe and variations for the Briggs–Rauscher oscillation reaction. J Chem Educ 89:1421–1424

    Article  CAS  Google Scholar 

  10. Vanag VK, Alfimov MV (1993) Effects of stirring on photoinduced phase transition in a batch-mode Briggs–Raucher reaction. J Phys Chem 97:1884–1890

    Article  CAS  Google Scholar 

  11. Vanag VK, Alfimov MV (1993) Light-induced nonequilibrium phase transition between quasistationary states of the briggs-rauscher reaction under batch conditions. J Phys Chem 97:1878–1883

    Article  CAS  Google Scholar 

  12. Epstein IR, Pojman JA (1998) An introduction to nonlinear chemical dynamics. Oxford University Press, New York, Oxford, pp 325–327

    Google Scholar 

  13. Rojas JC, John JM, Lee J, Gonzalez-Lima F (2009) Methylene blue provides behavioral and metabolic neuroprotection against optic neuropathy. Neuro Tox Res 15:260–273

    Article  CAS  Google Scholar 

  14. Cervellati R, Höner K, Furrow SD, Neddens C, Costa S (2001) The Briggs–Rauscher reaction as a test to measure the activity of antioxidants. Helv Chim Acta 84:3533–3547

    Article  CAS  Google Scholar 

  15. Cervellati R, Furrow SD (2013) Effects of additives on the oscillations of the Briggs–Rauscher reaction. Russ J Phys Chem A 87:2121–2126

    Article  CAS  Google Scholar 

  16. Čupić Ž, Lj Kolar-Anić, Anić S, Macešić S, Maksimović J, Pavlović M, Milenković M, Bubanja I, Greco E, Furrow SD, Cervellati R (2014) Regularity of intermittent bursts in Briggs–Rauscher oscillating systems with phenol. Helv Chim Acta 97:321–333

    Article  Google Scholar 

  17. Cervellati R, Furrow SD (2007) Perturbations of the Briggs–Rauscher oscillating system by iron-phenanthroline complexes. Inorg Chim Acta 360:842–848

    Article  CAS  Google Scholar 

  18. Cervellati R, Mongiorgi B (1998) Inhibition of chemical oscillations by bromide ion in the Briggs–Rauscher reaction. Int J Chem Kinet 30:641–646

    Article  CAS  Google Scholar 

  19. Cooke DO (1975) Preliminary investigations of the hydrogen-peroxide-iodic acid-manganese(ii)-malonic acid oscillating system. React Kinet Catal Lett 3:377–384

    Article  CAS  Google Scholar 

  20. Furrow SD, Noyes RM (1982) The oscillatory Briggs–Rauscher reaction. 2. Effects of substitutions and additions. J Am Chem Soc 104:42–45

    Article  CAS  Google Scholar 

  21. Schmitz G, Furrow S (2015) Bray–Liebhafsky and non-catalyzed Briggs–Rauscher oscillating reactions. Russ J Phys Chem A: in press

  22. Schmitz G (2011) Iodine oxidation by hydrogen peroxide and Bray–Liebhafsky oscillating reaction: effect of the temperature. Phys Chem Chem Phys 13:7102–7111

    Article  CAS  Google Scholar 

  23. Schmitz G (2004) Inorganic reactions of iodine(+1) in acidic solutions. Int J Chem Kin 36:480–493

    Article  CAS  Google Scholar 

  24. Turner DH, Flynn GW, Sutin N, Beitz JV (1972) Laser Raman temperature-jump study of the kinetics of the triodide equilibrium; relaxation times in the 10−8 to 10−7 second range. J Am Chem Soc 94:1554

    Article  CAS  Google Scholar 

  25. Liebhafsky HA, Mohammad A (1933) The kinetics of the reduction, in acid solution, of hydrogen peroxide by iodide ion. J Am Chem Soc 55:3977–3986

    Article  CAS  Google Scholar 

  26. Swartz HA, Bielski BHJ (1986) Reactions of HO, and 0,- with iodine and bromine and the 1,- and I atom reduction potentials. J Phys Chem 90:1445–1448

    Article  Google Scholar 

  27. Onel L, Bourceanu G, Wittmann M, Noszticzius Z, Szabo G (2008) I(+1) transfer from diiodomalonic acid to malonic acid and a complete inhibition of the CO and CO2 evolution in the Briggs–Rauscher reaction by resorcinol. J Chem Phys A 112:11649–11655

    Article  CAS  Google Scholar 

  28. Bielski BHJ, Cabelli DE, Arudi RL (1985) Reactivity of HO2/O2 radicals in aqueous solution. J Phys Chem Ref Data 14:1041–1100

    Article  CAS  Google Scholar 

  29. Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U (2006) COPASI: a COmplex PAthway SImulator. Bioinformatics 22:3067–3074

    Article  CAS  Google Scholar 

  30. Stanisavljev DR, Milenkovic MC, Mojovic MD, Popovic-Bijelic AD (2011) Oxygen centered radicals in iodide chemical oscillators. J Phys Chem A 115:7955–7958

    Article  CAS  Google Scholar 

  31. Stanisavljev DR, Milenkovic MC, Popovic-Bijelic AD, Mojovic MD (2013) Radicals in the Bray–Liebhafsky oscillatory reaction. J Phys Chem A 117:3292–3295

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanley D. Furrow.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furrow, S.D., Cervellati, R. & Greco, E. Study of the transition to higher iodide in the malonic acid Briggs–Rauscher oscillator. Reac Kinet Mech Cat 118, 59–71 (2016). https://doi.org/10.1007/s11144-015-0967-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-015-0967-4

Keywords

Navigation