Skip to main content
Log in

Influence of preparation methods on the structure and catalytic performance of nanostructured La0.7Ba0.3Co0.3Ni0.7O3 for CO oxidation

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Nano-perovskite oxides La0.7Ba0.3Co0.3Ni0.7O3 were synthesized by the co-precipitation and polymerized complex route based on the Pechini process methods (denoted as LBCN-Cop and LBCN-P, respectively) and employed in the removal of carbon monoxide (CO) from (N2 + CO + O2) gas mixture through oxidation. In this paper, the effect of the preparation method on the catalytic activity of nanocatalysts is discussed. The catalysts were characterized by XRD, FTIR, BET, TPR, SEM and EDX techniques. The specific surface area of the prepared catalysts varied from 24.55 (LBCN-Cop) to 34.14 (LBCN-P) m2 g−1. SEM investigations revealed that the LBCN-P nanoparticles were uniform spheres in shape with diameters ranging from 50 to 60 nm, whereas more agglomeration of particles was found for the LBCN-Cop catalyst. The results of catalytic activity measurements showed the superiority of the catalyst sample prepared by the Pechini method for CO oxidation at low temperatures compared with that prepared by the co-precipitation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chiu K, Kwong F, Ng D (2012) Microporous Mesoporous Mater 156:1–6

    Article  CAS  Google Scholar 

  2. Busca G, Finocchio E, Escribano VS (2012) Appl Catal B 113:172–179

    Article  Google Scholar 

  3. Laguna OH, Centeno MA, Romero-Sarria F, Odriozola JA (2011) Catal Today 172:118–123

    Article  CAS  Google Scholar 

  4. Chang LH, Sasirekha N, Rajesh B, Chen YW (2007) Sep Purif Technol 58:211–218

    Article  CAS  Google Scholar 

  5. Ma AJ, Wang SZ, Liu C, Xian H, Ding Q, Guo L, Meng M, Tand YS, Tsubakie N, Zhang J, Zheng LR, Lia XG (2014) Appl Catal B 146:24–34

    Article  CAS  Google Scholar 

  6. Pecchi G, Dinamarca R, Campos CM, Garcia X, Jimenez R, Fierro JLG (2014) Ind Eng Chem Res 53:10090–10096

    Article  CAS  Google Scholar 

  7. Pena MA, Fierro JLG (2001) Chem Rev 101:1981–2017

    Article  CAS  Google Scholar 

  8. Arefi Oskoui S, Niaei A, Tseng HH, Salari D, Izadkhah B, Hosseini SA (2013) ACS Comb Sci 15:609–621

    Article  Google Scholar 

  9. Huang K, Chu X, Yuan L, Feng W, Wu X, Wang X, Feng S (2014) Chem Commun 50:9200–9203

    Article  CAS  Google Scholar 

  10. Cui CH, Yu SH (2013) Acc Chem Res 46:1427–1437

    Article  CAS  Google Scholar 

  11. Debe MK (2012) Nature 486:43–51

    Article  CAS  Google Scholar 

  12. Li Y, Shen W (2014) Chem Soc Rev 43:1543–1574

    Article  Google Scholar 

  13. Watanabe R, Mukawa K, Kojima J, Kikuchi E, Sekine Y (2013) Appl Catal A 462–463:168–177

    Article  Google Scholar 

  14. Ran R, Wu X, Weng D (2006) J Alloys Compd 414:169–174

    Article  CAS  Google Scholar 

  15. Seyfi B, Baghalha M, Kazemian H (2009) Chem Eng J 148:306–311

    Article  CAS  Google Scholar 

  16. Tanaka H, Mizuno N, Misono M (2003) Appl Catal A 244:371–382

    Article  CAS  Google Scholar 

  17. Taguchi H, Yamada S, Nagao M, Ichikawa Y, Tabata K (2002) Mater Res Bull 37:69–76

    Article  CAS  Google Scholar 

  18. Sreedhar K, Pavaskar NR (2002) Mater Lett 53:452–455

    Article  CAS  Google Scholar 

  19. Tejuca LG, Fierro JLG, Tascon JMD (1989) Adv Catal 36:237–328

    CAS  Google Scholar 

  20. Yamazoe N, Teraoka Y (1990) Catal Today 8:175–199

    Article  CAS  Google Scholar 

  21. Popa M, Frantti J, Kakihana M (2002) Solid State Ionics 154:437–445

    Article  Google Scholar 

  22. Popa M, Kakihana M (2002) Solid State Ionics 151:251–257

    Article  CAS  Google Scholar 

  23. Lin J, Yu M, Lin C, Liu X (2007) J Phys Chem C 111:5835–5845

    Article  CAS  Google Scholar 

  24. Spinicci R, Faticanti M, Marini P, De Rossi S, Porta P (2003) J Mol Catal A: Chem 197:147–155

    Article  CAS  Google Scholar 

  25. Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Chem Rev 104:3893–3946

    Article  CAS  Google Scholar 

  26. Rezaei M, Alavi SM, Sahebdelfar S, Yan ZF (2009) J Porous Mater 16:497–505

    Article  CAS  Google Scholar 

  27. Guo X, Meng M, Dai F, Li Q, Zhang Z, Jiang Z, Zhang S, Huang Y (2013) Appl Catal B 142–143:278–289

    Article  Google Scholar 

  28. Zhu J, Li H, Zhong L, Xiao P, Xu X, Yang X, Zhao Z, Li J (2014) ACS Catal 4:2917–2940

    Article  CAS  Google Scholar 

  29. Li X, Zhang HB, Li SJ (1995) Mater Chem Phys 41:41–45

    Article  CAS  Google Scholar 

  30. Adekunle AS, Oyekunle JA, Oluwafemi OS, Joshua AO, Makinde WO, Ogunfowokan AO, Eleruja MA, Ebenso EE (2014) Int J Electrochem Sci 9:3008–3021

    Google Scholar 

  31. Saghatforoush LA, Hasanzadeh M, Sanati S, Mehdizadeh R (2012) Bull Korean Chem Soc 33:2613–2618

    Article  CAS  Google Scholar 

  32. Wu S, Song C, Bin F, Lv G, Song J, Gong C (2014) Mater Chem Phys 148:181–189

    Article  CAS  Google Scholar 

  33. Zhou C, Liu X, Wu C, Wen Y, Xue Y, Chen R, Zhang Z, Shan B, Yin H, Wang WG (2014) Phys Chem Chem Phys 16:5106–5112

    Article  CAS  Google Scholar 

  34. Sun S, Yang L, Pang G, Feng S (2011) Appl Catal A 401:199–203

    Article  CAS  Google Scholar 

  35. Liang H, Hong Y, Zhu C, Li S, Chen Y, Liu Z, Ye D (2013) Catal Today 201:98–102

    Article  CAS  Google Scholar 

  36. Yan X, Huang Q, Li B, Xu X, Chen Y, Zhu S, Shen S (2013) J Ind Eng Chem 19:561–565

    Article  CAS  Google Scholar 

  37. De Araujo GC, Lima S, Rangel MDC, Parola VL, Pena MA, De Fierro JLG (2005) Catal Today 107–108:906–912

    Article  Google Scholar 

  38. Kawi S, Kathiraser Y (2015) Front Energy Res 3:1–17

    Article  Google Scholar 

  39. Martinelli DM, Melo DM, Garrido Pedrosa AM, Martinelli AE, Melo MA, Batista MK, Bitencourt RC (2012) Mater Sci Appl 3:363–368

    CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to University of Kashan, Kashan, Iran, for partial financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Mohsennia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niknahad, B., Mohsennia, M. & Eliassi, A. Influence of preparation methods on the structure and catalytic performance of nanostructured La0.7Ba0.3Co0.3Ni0.7O3 for CO oxidation. Reac Kinet Mech Cat 117, 537–550 (2016). https://doi.org/10.1007/s11144-015-0965-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-015-0965-6

Keywords

Navigation