Skip to main content
Log in

Enhancement of the catalytic activity of H-ZSM-5 zeolites for glycerol acetalization by mechanical grinding

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The synthesis of 2,2-dimethyl-1,3-dioxolane-4-methanol (solketal) from acetalization of glycerol with acetone was carried out over two types of ZSM-5 zeolites of similar Si/Al ratio (=12.5 and 13.5) characterized with different particle sizes. The reaction was performed in a liquid phase, under mild reaction conditions. The applied samples showed very different glycerol conversion depending on the particle size of the catalysts. Using large particle materials results in relatively low activity in the studied reaction due to the long diffusion way of substrates and products. The modification of commercial zeolites by means of grinding results in the formation of fine agglomerates and brings about a significant increase in solketal yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu X, Ma H, Wu Y, Wang C, Yang M, Yan P, Welz-Biermann U (2011) Green Chem 13:697–701

    Article  CAS  Google Scholar 

  2. Pariente S, Tanchoux N, Faula F (2008) Green Chem 11:1256–1261

    Article  Google Scholar 

  3. Venugopal A, Sarkali R, Naveen Kumar S, Kotesh Kumar M, Syed John S, Kriszna Reddy J, Hari Padmasri A (2014) J Chem Sci 126:387–393

    Article  CAS  Google Scholar 

  4. Konaka A, Tago T, Yoshikawa T, Nakamura A, Maruda T (2011) Res Chem Intermed 37:1247–1256

    Article  Google Scholar 

  5. Zheng Y, Chen X, Shen Y (2008) Chem Rev 108:5253–5277

    Article  CAS  Google Scholar 

  6. Rahmat N, Abdullah AZ, Mohamed AR (2010) Renew Sustain Energy Rev 14:987–1000

    Article  CAS  Google Scholar 

  7. Guerrero-Pérez MO, Rosas JM, Bedia J, Rodríguez-Mirasol J, Cordero T (2009) Recent Pat Chem Eng 2:11–21

    Article  Google Scholar 

  8. Ferreira P, Fonseca IM, Ramos AM, Vital J, Castanheiro JE (2010) Appl Catal B 98:94–98

    Article  CAS  Google Scholar 

  9. Vicente G, Melero JA, Morales G, Paniagua M, Martín E (2010) Green Chem 12:899–907

    Article  CAS  Google Scholar 

  10. Da Silva CXA, Gonçalves VLC, Mota CJA (2009) Green Chem 11:38–41

    Article  Google Scholar 

  11. Deutsch J, Martin A, Lieske H (2007) J Catal 245:428–435

    Article  CAS  Google Scholar 

  12. Gonçalves VLC, Pinto BP, Silva JC, Mota CJA (2008) Catal Today 673:133–135

    Google Scholar 

  13. De Torres M, Jiménez-osés G, Mayoral JA, Pires E, De los Santos M (2012) Fuel 94:614–616

    Article  Google Scholar 

  14. Rodrigues R, Gonçalves M, Mandelli D, Pescarmona PP, Carvalho WA (2014) Catal Sci Technol 4:2293–2301

    Article  CAS  Google Scholar 

  15. Serafim H, Fonseca IM, Ramos AM, Vital J, Castanheiro JE (2011) Chem Eng J 178:291–296

    Article  CAS  Google Scholar 

  16. Manjunathan P, Paradur SP, Halgeri AB, Shanbhag GV (2015) J Mol Catal A 396:47–54

    Article  CAS  Google Scholar 

  17. Jia C-J, Liu Y, Schmidt W, Lu A-H, Schüth F (2010) J Catal 269:71–79

    Article  CAS  Google Scholar 

  18. Firoozi M, Baghalha M, Asadi M (2009) Catal Commun 10:1582–1585

    Article  CAS  Google Scholar 

  19. Viswanadham N, Saxena SK, Kumar J, Sreenivasulu P, Nandan D (2012) Fuel 95:298–304

    Article  CAS  Google Scholar 

  20. Konno H, Okamura T, Kawahara T, Nakasaka Y, Tago T, Masuda T (2012) Chem Eng J 207–208:490–496

    Article  Google Scholar 

  21. Song W, Grassian VH, Larsen SC (2005) Chem Commun 23:2951–2953

    Article  Google Scholar 

  22. Larsen SC (2007) J Phys Chem C 111:18464–18474

    Article  CAS  Google Scholar 

  23. Kong C, Tsuru T (2010) Chem Eng Process 49:809–814

    Article  CAS  Google Scholar 

  24. Gopalakrishnan S, Yada S, Muench J, Selvam T, Schwieger W, Sommer M, Peukert W (2007) Appl Catal A 327:132–138

    Article  CAS  Google Scholar 

  25. López-Medina R, Sobczak I, Golinska-Mazwa H, Ziolek M, Bañares MA, Guerrero-Pérez MO (2012) Catal Today 187:195–200

    Article  Google Scholar 

  26. Pieta IS, Ishaq M, Wells RPK, Anderson JA (2010) Appl Catal A 390:127–134

    Article  CAS  Google Scholar 

  27. Khabtou S, Chevreau T, Lavalley JC (1994) Microporous Mater 3:133–148

    Article  CAS  Google Scholar 

  28. Frisch MJ et al (2003) Gaussian 03, Revision B.01. Gaussian, Inc, Pittsburgh

    Google Scholar 

  29. Li L, Korányi TI, Sels BF, Pescarmona PP (2012) Green Chem 14:1611–1619

    Article  CAS  Google Scholar 

  30. Akçay K, Sirkecioğlu A, Tatlıer M, Savaşçi ÖT, Erdem-Şenatalar A (2004) Powder Technol 142:121–128

    Article  Google Scholar 

  31. Han W, Jia Y, Xiong G, Yang W (2007) Sci Technol Adv Mater 8:101–105

    Article  CAS  Google Scholar 

  32. Davis TM, Chen C-Y, Žilková N, Vitvarová-Procházková D, Čejka J, Zones SI (2013) J Catal 298:84–93

    Article  CAS  Google Scholar 

  33. Nair GS, Adrijanto E, Alsalme A, Kozhevnikov IV, Cooke DJ, Brown DR, Shiju NR (2012) Catal Sci Technol 2:1173–1179

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jolanta Kowalska-Kus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kowalska-Kus, J., Held, A. & Nowinska, K. Enhancement of the catalytic activity of H-ZSM-5 zeolites for glycerol acetalization by mechanical grinding. Reac Kinet Mech Cat 117, 341–352 (2016). https://doi.org/10.1007/s11144-015-0922-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-015-0922-4

Keywords

Navigation