Skip to main content

Photocatalytic degradation of azo dyes by sol–gel TiO2 films: effects of polyethylene glycol addition, reaction temperatures and irradiation wavelengths

Abstract

Two nanostructured sol–gel TiO2 films were prepared on a glass substrate by means of the dip-coating technique with titanium (IV) isopropoxide as a precursor with and without the addition of polyethylene glycol (PEG) as a structure-directing agent. The synthesized films were characterized by using thermal gravimetry, differential scanning calorimetry, micro-Raman spectroscopy, and atomic force microscopy (AFM). Results of the AFM analysis revealed that both films are nanostructured and that the TiO2 film prepared with the addition of PEG has higher values of roughness. The photocatalytic activity of the films was evaluated by the photocatalytic degradation of the methyl orange monoazo dye and the congo red diazo dye with predominant radiation wavelengths of 365 nm (UV-A) and 254 nm (UV-C). The effects of temperature (17.5, 25 and 35 °C) on the film stability and on the degradation process were also followed. The TiO2 film created with the addition of PEG showed heightened photoactivity at all reaction temperatures and higher degradation rates of both dyes were observed with the UV-C than with the UV-A radiation. In some cases, the total decolorization process was complete in 90 or 120 min, but the total mineralization of the dye solutions was not achieved after 120 min. The TiO2 films were stable at all three temperatures after more than 50 working hours. The degradation processes of dyes were monitored by means of the UV/VIS spectrophotometry and the liquid chromatography mass spectrometry together with the total organic carbon.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Brown MA, Devito SC (1993) Predicting azo-dye toxicity. Crit Rev Environ Sci Technol 23:249–324

    CAS  Article  Google Scholar 

  2. 2.

    Alves de Lima RO, Bazo AP, Salvadori DMF, Rech CM, Oliveira de Palma D, Umbuzeiro de Aragăo G (2007) Mutagenic and carcinogenic potential of a textile azo dye processing plant effluent that impacts a drinking water source. Mutat Res Genet Toxicol Environ Mutagen 626:53–60

    CAS  Article  Google Scholar 

  3. 3.

    Mills A, Le Hunte S (1997) An overview of semiconductor photocatalysis. J Photochem Photobiol A 108:1–35

    CAS  Article  Google Scholar 

  4. 4.

    Zhang F, Zhao J, Shen T, Hidaka H, Pelizzetti E, Serpone N (1998) TiO2-assisted photodegradation of dye pollutants II. Adsorption and degradation kinetics of eosin in TiO2 dispersions under visible light irradiation. Appl Catal B 15:147–156

    Article  Google Scholar 

  5. 5.

    Pekakis PA, Xekoukoulotakis NP, Mantzavinos D (2006) Treatment of textile dyehouse wastewater by TiO2 photocatalysis. Water Res 40:1276–1286

    CAS  Article  Google Scholar 

  6. 6.

    Rauf MA, Meetani MA, Hisaindee S (2011) An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals. Desalination 276:13–27

    CAS  Article  Google Scholar 

  7. 7.

    Arslan I, Akmehmet Balcioğlu I (1999) Degradation of commercial reactive dyestuffs by heterogenous and homogenous advanced oxidation processes: a comparative study. Dyes Pigm 43:95–108

    CAS  Article  Google Scholar 

  8. 8.

    Harrelkas F, Paulo A, Alves MM, El Khadir L, Zahra O, Pons MN, van der Zee FP (2008) Photocatalytic and combined anaerobic–photocatalytic treatment of textile dyes. Chemosphere 72:1816–1822

    CAS  Article  Google Scholar 

  9. 9.

    Linsebigler AL, Lu G, Yates J (1995) Photocatalysis on surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758

    CAS  Article  Google Scholar 

  10. 10.

    Ling CM, Mohamed AR, Bhatia S (2004) Performance of photocatalytic reactors using immobilized TiO2 film for the degradation of phenol and methylene blue dye present in water stream. Chemosphere 57:547–554

    CAS  Article  Google Scholar 

  11. 11.

    Bensouici F, Souier T, Iratni A, Dakhe AA, Tala-Ighil R, Bououdina M (2014) Immobilization of titanium dioxide onto supporting materials in heterogeneous photocatalysis: a review. Surf Coat Technol 251:170–176

    CAS  Article  Google Scholar 

  12. 12.

    Ćurković L, Ljubas D, Juretić H (2010) Photocatalytic decolorization kinetics of diazo dye Congo Red aqueous solution by UV/TiO2 nanoparticles. React Kinet Mech Cat 9:201–208

    Google Scholar 

  13. 13.

    Zheng J, Bao S, Guo Y, Jin P, Zheng J, Bao S, Guo Y, Jin P (2014) A comparative study on physicochemical properties and photocatalytic behavior of two different nanostructure composite TiO2 films coated on glass substrate. Surf Coat Technol 240:293–300

    CAS  Article  Google Scholar 

  14. 14.

    Maia CG, Oliveira AS, Saggioro EM, Moreira JC (2014) Optimization of the photocatalytic degradation of commercial azo dyes in aqueous TiO2 suspensions. Reac Kinet Mech Cat 113:305–320

    CAS  Article  Google Scholar 

  15. 15.

    Baudys M, Zlamal M, Krysa J, Jirkovsky J, Kluson P (2012) Notes on heterogeneous photocatalysis with the modelazo dye acid orange on TiO2. Reac Kinet Mech Cat 106:297–311

    CAS  Article  Google Scholar 

  16. 16.

    Yu JC, Tang HY, Yu J, Chan HC, Zhang L, Xie Y, Wang H, Wong SP (2002) Bactericidal and photocatalytic activities of TiO2 thin films prepared by sol-gel and reverse micelle methods. J Photochem Photobiol A 153:211–219

    CAS  Article  Google Scholar 

  17. 17.

    Šegota S, Ćurković L, Ljubas D, Svetličić V, Fiamengo Houra I, Tomašić N (2011) Synthesis, characterization and photocatalytic properties of sol-gel TiO2 films. Ceram Int 37:1153–1160

    Article  Google Scholar 

  18. 18.

    Zainal Z, Lee KH, Hussein MZ, Taufiq-Yap YH, Abdullah AH, Ramli I (2005) Removal of dyes using immobilized titanium dioxide illuminated by fluorescent lamps. J Hazard Mater 125:113–120

    CAS  Article  Google Scholar 

  19. 19.

    Ao CH, Leung MKH, Lam RCW, Leung DYC, Vrijmoed LP, Yamand WC, Ng SP (2007) Photocatalytic decolorization of anthraquinonic dye by TiO2 thin film under UV-A and visible-light irradiation. Chem Eng J 129:153–159

    CAS  Article  Google Scholar 

  20. 20.

    Patil SR, Akpan UG, Hameed BH (2015) Photocatalytic activity of sol–gel-derived mesoporous TiO2 thin films for reactive orange 16 degradation. Desalin Water Treat 53:3604–3614

    CAS  Article  Google Scholar 

  21. 21.

    Ćurković L, Ljubas D, Šegota S, Bačić I (2014) Photocatalytic degradation of Lissamine Green B dye by using nanostructured sol-gel TiO2 films. J Alloy Compd 604:309–316

    Article  Google Scholar 

  22. 22.

    Kuhn HJ, Braslavsky SE, Schmidt R (2004) Chemical actinometry (IUPAC technical report). Pure Appl Chem 76:2105–2146

    CAS  Article  Google Scholar 

  23. 23.

    Choudhury B, Choudhury A (2013) Local structure modification and phase transformation of TiO2 nanoparticles initiated by oxygen defects, grain size, and annealing temperature. Int Nano Lett 3:1–9

    CAS  Article  Google Scholar 

  24. 24.

    Choi HC, Jung YM, Bin Kim S (2005) Size effects in the Raman spectra of TiO2 nanoparticles. Vib Spectrosc 37:33–38

    CAS  Article  Google Scholar 

  25. 25.

    Mathpal MC, Tripathi AK, Singh MK, Gairola SP, Pandey SN, Agarwal A (2013) Effect of annealing temperature on Raman spectra of TiO2 nanoparticles. Chem Phys Lett 555:182–186

    CAS  Article  Google Scholar 

  26. 26.

    Gouma PI, Dutta PK, Mills MJ (1999) Structural stability of titania thin films. Nanostruct Mater 11:1231–1237

    CAS  Article  Google Scholar 

  27. 27.

    Bersani D, Antonioli G, Lottici PP, Lopez T (1998) Raman study of nanosized titania prepared by sol-gel route. J Non Cryst Solids 232–234:175–181

    Article  Google Scholar 

  28. 28.

    Hanaor DAH, Sorrell CC (2011) Review of the anatase to rutile phase transformation. J Mater Sci 46:855–874

    CAS  Article  Google Scholar 

  29. 29.

    Djaoued Y, Badilescu S, Ashrit PV, Bersani D, Lottici PP (2002) Low temperature sol-gel preparation of nanocrystalline TiO2 thin films. J Sol Gel Sci Technol 24:247–254

    CAS  Article  Google Scholar 

  30. 30.

    Djaoued Y, Badilescu S, Ashrit PV, Bersani D, Lottici PP, Robichaud J (2002) Study of anatase to rutile phase transition in nanocrystalline titania films. J Sol Gel Sci Technol 24:255–264

    CAS  Article  Google Scholar 

  31. 31.

    Djaoued Y, Robichaud J, Brüning R, Albert AS, Ashrit PV (2005) The effect of poly(ethylene glycol) on the crystallisation and phase transitions of nanocrystalline TiO2 thin films. Mater Sci Pol 23:15–27

    CAS  Google Scholar 

  32. 32.

    Kim DJ, Hahn SH, Oh SH, Kim EJ (2002) Influence of calcination temperature on structural and optical properties of TiO2 thin films prepared by sol–gel dip coating. Mater Lett 57:355–360

    Article  Google Scholar 

  33. 33.

    Kajitvichyanukul P, Ananpattarachai J, Pongpom S (2005) Sol–gel preparation and properties study of TiO2 thin film for photocatalytic reduction of chromium(VI) in photocatalysis process. Sci Technol Adv Mater 6:352–358

    CAS  Article  Google Scholar 

  34. 34.

    Yu JC, Ho W, Yu J, Hark SK, Iu K (2003) Effects of trifluoroacetic acid modification on the surface microstructures and photocatalytic activity of mesoporous TiO2 thin films. Langmuir 19:3889–3896

    CAS  Article  Google Scholar 

  35. 35.

    Valtierra JM, Sanchez-Cardenas M, Frausto-Reyes C, Calixto S (2006) Formation of smooth and rough TiO2 thin films on fiberglass by sol-gel method. J Mex Chem Soc 50:8–13

    Google Scholar 

  36. 36.

    Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations—a review. Appl Catal B 49:1–14

    CAS  Article  Google Scholar 

  37. 37.

    Martínez C, Canle ML, Fernández MI, Santaballa JA, Faria J (2011) Kinetics and mechanism of aqueous degradation of carbamazepine by heterogeneous photocatalysis using nanocrystalline TiO2, ZnO and multi-walled carbon nanotubes–anatase composites. Appl Catal B 102:563–571

    Article  Google Scholar 

  38. 38.

    Arslan Alaton I, Balcioglu IA, Bahnemann DW (2002) Advanced oxidation of a reactive dyebath effluent: comparison of O3, H2O2/UV-C and TiO2/UV-A processes. Water Res 36:1143–1154

    Article  Google Scholar 

  39. 39.

    Ljubas D, Smoljanić G, Juretić H (2015) Degradation of Methyl Orange and Congo Red dyes by using TiO2 nanoparticles activated by the solar and the solar-like radiation. J Environ Manag 161:83–91

    CAS  Article  Google Scholar 

  40. 40.

    Sakthivel S, Neppolian B, Shankar MV, Arabindoo B, Palanichamy M, Murugesan V (2003) Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Sol Energy Mater Sol Cells 77:65–82

    CAS  Article  Google Scholar 

  41. 41.

    Bandara J, Nadtochenko V, Kiwi J, Pulgarin C (1997) Dynamics of oxidant addition as a parameter in the modelling of dye mineralization (orange II) via advanced oxidation technologies. Water Sci Technol 35:87–93

    CAS  Article  Google Scholar 

  42. 42.

    Ma H, Wang M, Yang R, Wang W, Zhao J, Shen Z, Yao S (2007) Radiation degradation of congo red in aqueous solution. Chemosphere 68:1098–1104

    CAS  Article  Google Scholar 

  43. 43.

    Baiocchi C, Bianco Prevot A, Brussino MC, Pramauro E, Palmisano L, Marci G (2002) Characterization of methyl orange and its photocatalytic degradation products by HPLC/UV–VIS diode array and atmospheric pressure ionization quadrupole ion trap mass spectrometry. Int J Mass Spectrom 214:247–256

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lidija Ćurković.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ljubas, D., Ćurković, L., Marinović, V. et al. Photocatalytic degradation of azo dyes by sol–gel TiO2 films: effects of polyethylene glycol addition, reaction temperatures and irradiation wavelengths. Reac Kinet Mech Cat 116, 563–576 (2015). https://doi.org/10.1007/s11144-015-0917-1

Download citation

Keywords

  • TiO2 films
  • Sol–gel
  • Congo red dye
  • Methyl orange dye
  • Photocatalysis
  • Polyethylene glycol