Skip to main content
Log in

Effect of relative humidity on HCl formation from the reaction of H2SO4 and HNO3 with NaCl particles

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Short path gas cell Fourier transform infrared spectroscopy was used to analyze the production of hydrochloric acid (HCl) gas from the reaction of sodium chloride (NaCl) particles and sulfuric acid (H2SO4) or nitric acid (HNO3) at a range of relative humidity (2–95 %). HCl was produced from both acids, and reached equilibrium in 10 min for both H2SO4 and HNO3 acids. The equilibrium is thought to be a result of two competing reactions which produce HCl and sequester it back into the NaCl particles. The HCl production from H2SO4 was instantaneous, but its production from HNO3 involved an induction period of a few minutes. The equilibrium HCl conditions observed here have implications in influencing the pH of aerosol particles, and consequently the acidity of precipitation in the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Graedel TE, Keene WC (1995) Tropospheric budget of reactive chlorine. Glob Biogeochem Cycles 9:47–77. doi:10.1029/94GB03103

    Article  CAS  Google Scholar 

  2. McCulloch A, Aucott ML, Benkovitz CM et al (1999) Global emissions of hydrogen chloride and chloromethane from coal combustion, incineration, and industrial activities: reactive Chlorine Emissions Inventory. J Geophys Res 104:8391–8403

    Article  CAS  Google Scholar 

  3. Erickson DJ, Seuzaret C, Keene WC, Gong SL (1999) A general circulation model based calculation of HCl and ClNO2 production from sea salt dechlorination: reactive Chlorine Emissions Inventory. J Geophys Res 104:8347. doi:10.1029/98JD01384

    Article  CAS  Google Scholar 

  4. Sanhueza E (2001) Hydrochloric acid from chlorocarbons: a significant global source of background rain acidity. Tellus B 53:122–132. doi:10.1034/j.1600-0889.2001.d01-11.x

    Article  Google Scholar 

  5. Finlayson-Pitts BJ, Pitts JNJ (2000) Chemistry of the upper and lower atmosphere: theory, experiments, and applications, 1st edn. Academic Press, San Diego

    Google Scholar 

  6. Eldering A, Solomon PA, Salmon LG et al (1991) Hydrochloric acid: a regional perspective on concentrations and formation in the atmosphere of Southern California. Atmos Environ Part A 25:2091–2102. doi:10.1016/0960-1686(91)90086-M

    Article  Google Scholar 

  7. Tang IN, Tridico AC, Fung KH (1997) Thermodynamic and optical properties of sea salt aerosols. J Geophys Res 102:23269–23275. doi:10.1029/97JD01806

    Article  CAS  Google Scholar 

  8. Henriksson M, Warnqvist B (1979) Kinetics of the formation of HCl(g) by the reaction between NaCl(s) and SO2, O2, and H2O(g). Ind Eng Chem Process Des Dev 18:249–254

    Article  CAS  Google Scholar 

  9. De Haan DO, Finlayson-Pitts BJ (1997) Knudsen cell studies of the reaction of gaseous nitric acid with synthetic sea salt at 298 K. J Phys Chem A 101:9993–9999. doi:10.1021/jp972450s

    Article  Google Scholar 

  10. Ali HM, Iedema M, Yu X-Y, Cowin JP (2014) Ionic strength dependence of the oxidation of SO2 by H2O2 in sodium chloride particles. Atmos Environ 89:731–738. doi:10.1016/j.atmosenv.2014.02.045

    Article  CAS  Google Scholar 

  11. Seinfeld JH, Pandis SN (1998) Atmospheric chemistry and physics: from air pollution to climate change, 1st edn. Wiley, New York

    Google Scholar 

  12. Herzberg G (1965) Spectra of diatomic molecules. D. Van Nostrand, Princeton, NJ

  13. Ross SD (1999) Inorganic infrared and Raman spectra. McGraw-Hill, London

  14. Sander R (1999) Compilation of Henry’ s law constants for inorganic and organic species of potential importance in environmental chemistry. Environ Chem 29:85–107

    Google Scholar 

  15. Pio CA, Harrison RM (1987) The equilibrium of ammonium chloride aerosol with gaseous hydrochloric acid and ammonia under tropospheric conditions. Atmos Environ 21:1243–1246. doi:10.1016/0004-6981(87)90253-8

    Article  CAS  Google Scholar 

  16. Zangmeister CD, Pemberton JE (2000) Raman spectroscopy and atomic force microscopy of the reaction of sulfuric acid with sodium chloride. J Am Chem Soc 122:12289–12296

    Article  CAS  Google Scholar 

  17. Nakamoto K (1986) Infrared and Raman spectra of inorganic and coordination compounds, 4th edn. Wiley, New York

    Google Scholar 

  18. Barraclough PB, Hall PG (1974) The adsorption of water vapour by lithium fluoride, sodium fluoride and sodium chloride. Surf Sci 46:393–417. doi:10.1016/0039-6028(74)90316-1

    Article  CAS  Google Scholar 

  19. Wassermann B, Mirbt S, Reif J et al (1993) Clustered water adsorption on the NaCl(100) surface. J Chem Phys 98:10049. doi:10.1063/1.464438

    Article  CAS  Google Scholar 

  20. Dai DJ, Peters SJ, Ewing GE (1995) Water adsorption and dissociation on NaCl surfaces. J Phys Chem 99:10299–10304. doi:10.1021/j100025a035

    Article  CAS  Google Scholar 

  21. Benson SW, Richardson RL (1955) The catalytic effect of water upon the addition of hydrogen chloride gas to solid sodium sulfate 1. J Am Chem Soc 77:4206–4208. doi:10.1021/ja01621a006

    Article  CAS  Google Scholar 

  22. Beichert P, Finlayson-pitts BJ (1996) Knudsen cell studies of the uptake of gaseous HNO3 and other oxides of nitrogen on solid nacl: the role of surface-adsorbed water. J Phys Chem 100:15218–15228

    Article  CAS  Google Scholar 

  23. Ten Brink HM (1998) Reactive uptake of HNO3 and H2SO4 in sea-salt (NaCl) particles. J Aerosol Sci 29:57–64. doi:10.1016/S0021-8502(97)00460-6

    Article  Google Scholar 

Download references

Acknowledgments

Funding was provided by Arkansas Science Technology Authority (ASTA) summer internship program and Arkansas State University (ASU) faculty research awards. We would also like to acknowledge Dr. Ben Rougeau for his continued support with instrument calibrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fong, B.N., Newhouse, K.V. & Ali, H. Effect of relative humidity on HCl formation from the reaction of H2SO4 and HNO3 with NaCl particles. Reac Kinet Mech Cat 116, 273–283 (2015). https://doi.org/10.1007/s11144-015-0890-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-015-0890-8

Keywords

Navigation