Abstract
The development of the technology and the theory of electrothermal atomization, which began in atomic absorption spectrometry about 60 years ago, led to a confrontation between the two alternative models used in the kinetics of heterogeneous chemical reactions: the activation model proposed by Arrhenius (Z Phys Chem 4:226–248, 1889) and based on the effect of activation, and the thermochemical model (TM) proposed by Langmuir (Phys Rev 2:329–342, 1913), which excludes the existence of this effect. An analysis of the events surrounding the creation and evolution of both models and a comparison of their fundamental principles and their application to the solution of actual problems show the shortcomings of the activation model and fundamental limitations in its applicability. The TM for the first time in the history of these studies allowed a quantitative estimation and a prediction of the lifetime for substances depending on the environment and temperature of their storage. It allows the calculation of the rate of reaction and the Arrhenius parameters taking into account the composition, stoichiometry and thermochemical characteristics of the reaction, the excess pressure of the gaseous product in the reactor and the physical properties of the reactant (sample size and the density of the reactant). Within the TM, it was possible to solve many of the accumulated problems, including the physical nature of the parameters of the Arrhenius equation, the effect of autocatalysis, the kinetic compensation effect and the Topley–Smith effect. To overcome the lasting crisis in the kinetics of heterogeneous reactions, it is necessary to advance the public discussion of the current situation and search for appropriate ways to replace the activation model by the TM.
Similar content being viewed by others
References
Galwey AK, Brown ME (2000) Solid-state decompositions—stagnation or progress? J Therm Anal Calorim 260:863–877
Van’t Hoff JH (1884) Études de dynamique chimique. Frederik Müller et Co, Amsterdam
Arrhenius S (1889) Űber die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Z Phys Chem 4:226–248
Gardiner WC (1977) Temperature dependence of bimolecular gas reaction rates. Acc Chem Res 10:326–331
Bodenstein MZ (1899) Gasreaktionen in der chemischen Kinetik. III. Phys Chem 29:295–314
Stiller W (1989) Arrhenius Equation and Non-Equilibrium Kinetics. BSB B.-G. Teubner Verlagsgesellschaft, Leipzig
Laidler KJ (1984) The development of the Arrhenius equation. J Chem Educ 61:494–499
Eyring HJ (1935) The activated complex in chemical reactions. J Chem Phys 3:107–115. doi:10.1063/1.1749604
Evans MG, Polanyi M (1935) Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Trans Faraday Soc 31:875–894
Wagner C (1938) The mechanism of the movement of ions and electrons in solids and the interpretation of reactions between solids. Trans Faraday Soc 34:851–859
Boldyrev VV (1997) Reactivity of solids. Publishing House of Siberian Branch of RAS, Novosibirsk (in Russian)
Tretyakov YuD, Putlyaev VI (2006) Introduction to the chemistry of solid state materials. Nauka, Moscow (in Russian)
Hertz H (1882) Über die Verdunstung der Flüssigkeiten, insbesondere des Quecksilbers, im luftleeren Raume. Ann Phys Chem 17:177–200
Langmuir I (1913) The vapour pressure of metallic tungsten. Phys Rev 2:329–342
Langmuir I (1916) The constitution and fundamental properties of solids and liquids. J Am Chem Soc 38:2221–2295
L’vov BV (1966) Atomic absorption spectral analysis. Nauka, Moscow (in Russian)
L’vov BV (1970) Atomic absorption spectrochemical analysis. Adam Hilger, London
Benson SW (1968) Thermochemical kinetics. John Wiley, New York
L’vov BV, Ryabchuk GN (1981) Studies of the mechanisms of sample atomization in electrothermal atomic absorption spectrometry by analysis of absolute process rates. Oxygen-containing compounds. Zh Anal Khim 36:2085–2096 (in Russian)
L’vov BV, Fernandez GHA (1984) Regularities in thermal dissociation of oxides in graphite furnaces for atomic absorption analysis. Zh Anal Khim 39:221–231 (in Russian)
L’vov BV (1990) The mechanism of the thermal decomposition of metal nitrates in graphite furnaces for atomic absorption analysis. Zh Anal Khim 45:2144–2153 (in Russian)
L’vov BV (1991) Mechanism of the thermal decomposition of metal nitrates from graphite furnace mass spectrometry studies. Mikrochim Acta (Wien) II:299–308
L’vov BV, Novichikhin AV (1995) Mechanism of thermal decomposition of anhydrous metal nitrates. Spectrochim Acta B 50:1427–1448
L’vov BV (1997) Interpretation of atomization mechanisms in electrothermal atomic absorption spectrometry by analysis of the absolute rates of the processes. Spectrochim Acta B 52:1–23
L’vov BV (1997) Mechanism of thermal decomposition of alkaline-earth carbonates. Thermochim Acta 303:161–170
L’vov BV (2002) The interrelation between the temperature of solid decompositions and the E parameter of the Arrhenius equation. Thermochim Acta 389:199–211
L’vov BV (2006) Thermal decomposition of solid and liquid substances. Polytech Univ Publisher, St Petersburg (in Russian)
L’vov BV (2007) Thermal decomposition of solids and melts, new thermochemical approach to the mechanism, kinetics and methodology. Springer, Berlin
L’vov BV, Galwey AK (2012) The mechanism and kinetics of NiO reduction by hydrogen: thermochemical approach. J Therm Anal Calorim 110:601–610. doi:10.1007/s10973-011-2000-0
L’vov BV, Galwey AK (2013) Catalytic oxidation of CO on platinum: thermochemical approach. J Therm Anal Calorim 111:145–154. doi:10.1007/s10973-012-2241-6
L’vov BV, Galwey AK (2013) Catalytic oxidation of hydrogen on platinum: thermochemical approach. J Therm Anal Calorim 112:815–822. doi:10.1007/s10973-012-2567-0
L’vov BV, Galwey AK (2013) Toward a general theory of heterogeneous reactions: thermochemical approach. J Therm Anal Calorim 113:561–568. doi:10.1007/s10973-012-2754-z
Searcy AW, Beruto D (1974) Transition state theory for vaporization and condensation. J Phys Chem 78:1298–1304
Searcy AW, Beruto D (1976) Kinetics of endothermic decomposition reactions. 1. Steady-state chemical steps. J Phys Chem 80:425–429
Sturgeon RE, Mitchell DF, Berman SS (1983) Atomization of lead in graphite furnace atomic absorption spectrometry. Anal Chem 55:1059–1064
Bass DA, Holcombe JA (1987) Mass spectral investigation of mechanisms of lead vaporization from a graphite furnace used in electrothermal atomizers. Anal Chem 59:974–980
Dressler MS, Holcombe JA (1987) Mass spectral and atomic absorption studies of selenium vaporization from a graphite surface. Spectrochim Acta B 42:981–994
L’vov BV (2015) History of one discovery. Collaboration was difficult but rewarding. Spectrochim Acta B 105:3–6
Schwab G-M (1931) Katalyse vom Standpunkt der chemischen Kinetik. Springer, Berlin
L’vov BV (2010) The mechanism of solid-state decompositions in a retrospective. J Therm Anal Calorim 101:1175–1182. doi:10.1007/s10973-009-0579-1
Volmer M (1929) Über Keimbildung und Keimwirkung als Spezialfälle der heterogenen Katalyse. Z Elektrochem 35:555–561
Zawadzki J, Bretsznajder S (1938) Some remarks on the mechanism of reactions of the type: solid = solid + gas. Trans Faraday Soc 34:951–959
Thompson AK (2010) Controlled atmosphere storage of fruits and vegetables. CAB International, Wallingford
L’vov BV (2015) Kinetic parameters of CaCO3 decomposition in vacuum, air and CO2 calculated theoretically by means of the thermochemical approach. Reac Kinet Mech Cat 114:31–40. doi:10.1007/s11144-014-0767-2
L’vov BV (2014) Thermochemical model in kinetics of heterogeneous reactions: 100-year jubilee. J Therm Anal Calorim 116:1041–1045. doi:10.1007/s10973-013-3580-7
Trouton F (1884) On molecular latent heat. Phil Mag 18:54–57
L’vov BV (1997) Mechanism of thermal decomposition of metal azides. Thermochim Acta 291:179–185
L’vov BV (1997) Quantitative interpretation of the evaporation coefficients for the decomposition or sublimation of some substances in vacuo. Thermochim Acta 290:239–251
L’vov BV (2000) Kinetics and mechanism of thermal decomposition of nickel, manganese, silver, mercury and lead oxalates. Thermochim Acta 364:99–109
L’vov BV, Ugolkov VL (2010) Decomposition of KMnO4 in different gases as a potential kinetics standard in thermal analysis. J Therm Anal Calorim 100:145–153
L’vov BV, Ugolkov VL (2008) The self-heating effect in the process of KMnO4 decomposition in vacuum. J Therm Anal Calorim 94:453–460
Lewis GN (1905) Zersetzung von Silberoxyd durch Autokatalyse. Z Phys Chem 52:310–326
Constable FH (1925) The mechanism of catalytic decomposition. Proc R Soc Lond A 108:355–385
Topley B, Smith M (1931) Function of water vapor in the dissociation of a salt hydrate. Nature 128:302
L’vov BV, Galwey AK (2013) Interpretation of the kinetic compensation effect in heterogeneous reactions: thermochemical approach. Int Rev Phys Chem 32:515–557. doi:10.1080/0144235X.2013.802109
Pfaundler L (1867) Beiträge zur chemischen Statik. Pogg Ann Phys Chem 131:55–85
Leenson IA (2010) How and why chemical reactions take place. Elements of the chemical thermodynamics and kinetics. Publishing House “Intellect”, Dolgoprudny (in Russian)
Eremin VV, Borshchevskiy AYa (2012) Fundamentals of general and physical chemistry. Publishing House “Intellect”, Dolgoprudny (in Russian)
Mechkovskiy LA, Blokhin AV (2012) Chemical thermodynamics. Part 1: A phenomenological thermodynamics. Basic concepts, phase equilibrium. Belarus State University, Minsk (in Russian)
Garn PD (1978) Kinetic parameters. J Therm Anal 13:581–593
L’vov BV (2001) The physical approach to the interpretation of the kinetics and mechanisms of thermal decomposition of solids: the state of the art. Thermochim Acta 373:97–124
L’vov BV (2014) Activation effect in heterogeneous decomposition reactions: fact or fiction? Reac Kinet Mech Cat 111:415–429. doi:10.1007/s11144-014-0675-5
Vyazovkin S, Burnham AK, Criado JM, Pérez-Marqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–19. doi:10.1016/j.tca.2011.03.34
Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A, Opfermann J, Strey R, Anderson HL, Kemmler A, Keuleers R, Janssens J, Desseyn HO, Li Chao-Rui, Tang Tong B, Roduit B, Malek J, Mitsuhashi T (2000) Computational aspects of kinetic analysis. Part A: the ICTAC kinetic project-data, methods and results. Thermochim Acta 355:125–143
Vyazovkin S (2000) Kinetic concepts of thermally stimulated reactions in solids: a view from a historical perspective. Int Rev Phys Chem 19:45–60
Malhado JP, Tavares M, Berberan-Santos MN (2004) Study of a reversible gas phase reaction: an integrated physical chemistry project. Chem Educ 9:32–38
Acknowledgments
The author is indebted to Dr. Andrew Galwey (Belfast) and Dr. Valery Ugolkov (St Petersburg) for fruitful cooperation in some of these studies and Dr. Gábor Lente, the Managing Editor of the journal “Reaction Kinetics, Mechanism and Catalysis”, for his careful consideration of this work, including valuable comments which greatly helped in the presentation of this manuscript. The author thanks also his grandson Nikita L’vov (Princeton University, USA) for linguistic corrections to the text.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
L’vov, B.V. On the way from the activation model of solid decomposition to the thermochemical model. Reac Kinet Mech Cat 116, 1–18 (2015). https://doi.org/10.1007/s11144-015-0886-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11144-015-0886-4