Skip to main content
Log in

On the way from the activation model of solid decomposition to the thermochemical model

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The development of the technology and the theory of electrothermal atomization, which began in atomic absorption spectrometry about 60 years ago, led to a confrontation between the two alternative models used in the kinetics of heterogeneous chemical reactions: the activation model proposed by Arrhenius (Z Phys Chem 4:226–248, 1889) and based on the effect of activation, and the thermochemical model (TM) proposed by Langmuir (Phys Rev 2:329–342, 1913), which excludes the existence of this effect. An analysis of the events surrounding the creation and evolution of both models and a comparison of their fundamental principles and their application to the solution of actual problems show the shortcomings of the activation model and fundamental limitations in its applicability. The TM for the first time in the history of these studies allowed a quantitative estimation and a prediction of the lifetime for substances depending on the environment and temperature of their storage. It allows the calculation of the rate of reaction and the Arrhenius parameters taking into account the composition, stoichiometry and thermochemical characteristics of the reaction, the excess pressure of the gaseous product in the reactor and the physical properties of the reactant (sample size and the density of the reactant). Within the TM, it was possible to solve many of the accumulated problems, including the physical nature of the parameters of the Arrhenius equation, the effect of autocatalysis, the kinetic compensation effect and the Topley–Smith effect. To overcome the lasting crisis in the kinetics of heterogeneous reactions, it is necessary to advance the public discussion of the current situation and search for appropriate ways to replace the activation model by the TM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Galwey AK, Brown ME (2000) Solid-state decompositions—stagnation or progress? J Therm Anal Calorim 260:863–877

    Article  Google Scholar 

  2. Van’t Hoff JH (1884) Études de dynamique chimique. Frederik Müller et Co, Amsterdam

    Google Scholar 

  3. Arrhenius S (1889) Űber die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Z Phys Chem 4:226–248

    Google Scholar 

  4. Gardiner WC (1977) Temperature dependence of bimolecular gas reaction rates. Acc Chem Res 10:326–331

    Article  CAS  Google Scholar 

  5. Bodenstein MZ (1899) Gasreaktionen in der chemischen Kinetik. III. Phys Chem 29:295–314

    CAS  Google Scholar 

  6. Stiller W (1989) Arrhenius Equation and Non-Equilibrium Kinetics. BSB B.-G. Teubner Verlagsgesellschaft, Leipzig

    Google Scholar 

  7. Laidler KJ (1984) The development of the Arrhenius equation. J Chem Educ 61:494–499

    Article  CAS  Google Scholar 

  8. Eyring HJ (1935) The activated complex in chemical reactions. J Chem Phys 3:107–115. doi:10.1063/1.1749604

    Article  CAS  Google Scholar 

  9. Evans MG, Polanyi M (1935) Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Trans Faraday Soc 31:875–894

    Article  CAS  Google Scholar 

  10. Wagner C (1938) The mechanism of the movement of ions and electrons in solids and the interpretation of reactions between solids. Trans Faraday Soc 34:851–859

    Article  CAS  Google Scholar 

  11. Boldyrev VV (1997) Reactivity of solids. Publishing House of Siberian Branch of RAS, Novosibirsk (in Russian)

    Google Scholar 

  12. Tretyakov YuD, Putlyaev VI (2006) Introduction to the chemistry of solid state materials. Nauka, Moscow (in Russian)

    Google Scholar 

  13. Hertz H (1882) Über die Verdunstung der Flüssigkeiten, insbesondere des Quecksilbers, im luftleeren Raume. Ann Phys Chem 17:177–200

    Article  Google Scholar 

  14. Langmuir I (1913) The vapour pressure of metallic tungsten. Phys Rev 2:329–342

    Article  Google Scholar 

  15. Langmuir I (1916) The constitution and fundamental properties of solids and liquids. J Am Chem Soc 38:2221–2295

    Article  CAS  Google Scholar 

  16. L’vov BV (1966) Atomic absorption spectral analysis. Nauka, Moscow (in Russian)

    Google Scholar 

  17. L’vov BV (1970) Atomic absorption spectrochemical analysis. Adam Hilger, London

    Google Scholar 

  18. Benson SW (1968) Thermochemical kinetics. John Wiley, New York

    Google Scholar 

  19. L’vov BV, Ryabchuk GN (1981) Studies of the mechanisms of sample atomization in electrothermal atomic absorption spectrometry by analysis of absolute process rates. Oxygen-containing compounds. Zh Anal Khim 36:2085–2096 (in Russian)

    Google Scholar 

  20. L’vov BV, Fernandez GHA (1984) Regularities in thermal dissociation of oxides in graphite furnaces for atomic absorption analysis. Zh Anal Khim 39:221–231 (in Russian)

    Google Scholar 

  21. L’vov BV (1990) The mechanism of the thermal decomposition of metal nitrates in graphite furnaces for atomic absorption analysis. Zh Anal Khim 45:2144–2153 (in Russian)

    Google Scholar 

  22. L’vov BV (1991) Mechanism of the thermal decomposition of metal nitrates from graphite furnace mass spectrometry studies. Mikrochim Acta (Wien) II:299–308

    Article  Google Scholar 

  23. L’vov BV, Novichikhin AV (1995) Mechanism of thermal decomposition of anhydrous metal nitrates. Spectrochim Acta B 50:1427–1448

    Article  Google Scholar 

  24. L’vov BV (1997) Interpretation of atomization mechanisms in electrothermal atomic absorption spectrometry by analysis of the absolute rates of the processes. Spectrochim Acta B 52:1–23

    Article  Google Scholar 

  25. L’vov BV (1997) Mechanism of thermal decomposition of alkaline-earth carbonates. Thermochim Acta 303:161–170

    Article  Google Scholar 

  26. L’vov BV (2002) The interrelation between the temperature of solid decompositions and the E parameter of the Arrhenius equation. Thermochim Acta 389:199–211

    Article  Google Scholar 

  27. L’vov BV (2006) Thermal decomposition of solid and liquid substances. Polytech Univ Publisher, St Petersburg (in Russian)

    Google Scholar 

  28. L’vov BV (2007) Thermal decomposition of solids and melts, new thermochemical approach to the mechanism, kinetics and methodology. Springer, Berlin

    Book  Google Scholar 

  29. L’vov BV, Galwey AK (2012) The mechanism and kinetics of NiO reduction by hydrogen: thermochemical approach. J Therm Anal Calorim 110:601–610. doi:10.1007/s10973-011-2000-0

    Article  Google Scholar 

  30. L’vov BV, Galwey AK (2013) Catalytic oxidation of CO on platinum: thermochemical approach. J Therm Anal Calorim 111:145–154. doi:10.1007/s10973-012-2241-6

    Article  Google Scholar 

  31. L’vov BV, Galwey AK (2013) Catalytic oxidation of hydrogen on platinum: thermochemical approach. J Therm Anal Calorim 112:815–822. doi:10.1007/s10973-012-2567-0

    Article  Google Scholar 

  32. L’vov BV, Galwey AK (2013) Toward a general theory of heterogeneous reactions: thermochemical approach. J Therm Anal Calorim 113:561–568. doi:10.1007/s10973-012-2754-z

    Article  Google Scholar 

  33. Searcy AW, Beruto D (1974) Transition state theory for vaporization and condensation. J Phys Chem 78:1298–1304

    Article  CAS  Google Scholar 

  34. Searcy AW, Beruto D (1976) Kinetics of endothermic decomposition reactions. 1. Steady-state chemical steps. J Phys Chem 80:425–429

    Article  CAS  Google Scholar 

  35. Sturgeon RE, Mitchell DF, Berman SS (1983) Atomization of lead in graphite furnace atomic absorption spectrometry. Anal Chem 55:1059–1064

    Article  CAS  Google Scholar 

  36. Bass DA, Holcombe JA (1987) Mass spectral investigation of mechanisms of lead vaporization from a graphite furnace used in electrothermal atomizers. Anal Chem 59:974–980

    Article  CAS  Google Scholar 

  37. Dressler MS, Holcombe JA (1987) Mass spectral and atomic absorption studies of selenium vaporization from a graphite surface. Spectrochim Acta B 42:981–994

    Article  Google Scholar 

  38. L’vov BV (2015) History of one discovery. Collaboration was difficult but rewarding. Spectrochim Acta B 105:3–6

    Article  Google Scholar 

  39. Schwab G-M (1931) Katalyse vom Standpunkt der chemischen Kinetik. Springer, Berlin

    Book  Google Scholar 

  40. L’vov BV (2010) The mechanism of solid-state decompositions in a retrospective. J Therm Anal Calorim 101:1175–1182. doi:10.1007/s10973-009-0579-1

    Article  Google Scholar 

  41. Volmer M (1929) Über Keimbildung und Keimwirkung als Spezialfälle der heterogenen Katalyse. Z Elektrochem 35:555–561

    CAS  Google Scholar 

  42. Zawadzki J, Bretsznajder S (1938) Some remarks on the mechanism of reactions of the type: solid = solid + gas. Trans Faraday Soc 34:951–959

    Article  CAS  Google Scholar 

  43. Thompson AK (2010) Controlled atmosphere storage of fruits and vegetables. CAB International, Wallingford

    Book  Google Scholar 

  44. L’vov BV (2015) Kinetic parameters of CaCO3 decomposition in vacuum, air and CO2 calculated theoretically by means of the thermochemical approach. Reac Kinet Mech Cat 114:31–40. doi:10.1007/s11144-014-0767-2

    Article  Google Scholar 

  45. L’vov BV (2014) Thermochemical model in kinetics of heterogeneous reactions: 100-year jubilee. J Therm Anal Calorim 116:1041–1045. doi:10.1007/s10973-013-3580-7

    Article  Google Scholar 

  46. Trouton F (1884) On molecular latent heat. Phil Mag 18:54–57

    Article  Google Scholar 

  47. L’vov BV (1997) Mechanism of thermal decomposition of metal azides. Thermochim Acta 291:179–185

    Article  Google Scholar 

  48. L’vov BV (1997) Quantitative interpretation of the evaporation coefficients for the decomposition or sublimation of some substances in vacuo. Thermochim Acta 290:239–251

    Article  Google Scholar 

  49. L’vov BV (2000) Kinetics and mechanism of thermal decomposition of nickel, manganese, silver, mercury and lead oxalates. Thermochim Acta 364:99–109

    Article  Google Scholar 

  50. L’vov BV, Ugolkov VL (2010) Decomposition of KMnO4 in different gases as a potential kinetics standard in thermal analysis. J Therm Anal Calorim 100:145–153

    Article  Google Scholar 

  51. L’vov BV, Ugolkov VL (2008) The self-heating effect in the process of KMnO4 decomposition in vacuum. J Therm Anal Calorim 94:453–460

    Article  Google Scholar 

  52. Lewis GN (1905) Zersetzung von Silberoxyd durch Autokatalyse. Z Phys Chem 52:310–326

    Google Scholar 

  53. Constable FH (1925) The mechanism of catalytic decomposition. Proc R Soc Lond A 108:355–385

    Article  CAS  Google Scholar 

  54. Topley B, Smith M (1931) Function of water vapor in the dissociation of a salt hydrate. Nature 128:302

    Article  CAS  Google Scholar 

  55. L’vov BV, Galwey AK (2013) Interpretation of the kinetic compensation effect in heterogeneous reactions: thermochemical approach. Int Rev Phys Chem 32:515–557. doi:10.1080/0144235X.2013.802109

    Article  Google Scholar 

  56. Pfaundler L (1867) Beiträge zur chemischen Statik. Pogg Ann Phys Chem 131:55–85

    Article  Google Scholar 

  57. Leenson IA (2010) How and why chemical reactions take place. Elements of the chemical thermodynamics and kinetics. Publishing House “Intellect”, Dolgoprudny (in Russian)

    Google Scholar 

  58. Eremin VV, Borshchevskiy AYa (2012) Fundamentals of general and physical chemistry. Publishing House “Intellect”, Dolgoprudny (in Russian)

    Google Scholar 

  59. Mechkovskiy LA, Blokhin AV (2012) Chemical thermodynamics. Part 1: A phenomenological thermodynamics. Basic concepts, phase equilibrium. Belarus State University, Minsk (in Russian)

    Google Scholar 

  60. Garn PD (1978) Kinetic parameters. J Therm Anal 13:581–593

    Article  CAS  Google Scholar 

  61. L’vov BV (2001) The physical approach to the interpretation of the kinetics and mechanisms of thermal decomposition of solids: the state of the art. Thermochim Acta 373:97–124

    Article  Google Scholar 

  62. L’vov BV (2014) Activation effect in heterogeneous decomposition reactions: fact or fiction? Reac Kinet Mech Cat 111:415–429. doi:10.1007/s11144-014-0675-5

    Article  Google Scholar 

  63. Vyazovkin S, Burnham AK, Criado JM, Pérez-Marqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–19. doi:10.1016/j.tca.2011.03.34

    Article  CAS  Google Scholar 

  64. Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A, Opfermann J, Strey R, Anderson HL, Kemmler A, Keuleers R, Janssens J, Desseyn HO, Li Chao-Rui, Tang Tong B, Roduit B, Malek J, Mitsuhashi T (2000) Computational aspects of kinetic analysis. Part A: the ICTAC kinetic project-data, methods and results. Thermochim Acta 355:125–143

    Article  CAS  Google Scholar 

  65. Vyazovkin S (2000) Kinetic concepts of thermally stimulated reactions in solids: a view from a historical perspective. Int Rev Phys Chem 19:45–60

    Article  CAS  Google Scholar 

  66. Malhado JP, Tavares M, Berberan-Santos MN (2004) Study of a reversible gas phase reaction: an integrated physical chemistry project. Chem Educ 9:32–38

    CAS  Google Scholar 

Download references

Acknowledgments

The author is indebted to Dr. Andrew Galwey (Belfast) and Dr. Valery Ugolkov (St Petersburg) for fruitful cooperation in some of these studies and Dr. Gábor Lente, the Managing Editor of the journal “Reaction Kinetics, Mechanism and Catalysis”, for his careful consideration of this work, including valuable comments which greatly helped in the presentation of this manuscript. The author thanks also his grandson Nikita L’vov (Princeton University, USA) for linguistic corrections to the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris V. L’vov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

L’vov, B.V. On the way from the activation model of solid decomposition to the thermochemical model. Reac Kinet Mech Cat 116, 1–18 (2015). https://doi.org/10.1007/s11144-015-0886-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-015-0886-4

Keywords

Navigation