Skip to main content
Log in

Synthesis of 1,2-propanediol through glycerol hydrogenolysis on Cu–Al mixed oxides

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Cu–Al mixed oxides derived from hydrotalcite-like precursors having an atomic ratio of 3:1 and calcined at 300, 400, and 500 °C were synthesized. The samples were further reduced under hydrogen atmosphere and its catalytic activity was tested in glycerol hydrogenolysis in a batch reactor. Several techniques such as N2 physisorption, X-ray diffraction, thermogravimetric analysis, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy were used in order to characterize the synthesized mixed oxides. The most active catalyst in the glycerol hydrogenolysis was that calcined at 500 °C. Reaction variables were analyzed in order to determine their influence on glycerol hydrogenolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Karinen RS, Krause AOI (2006) Appl Catal A-Gen 306:128–133

    Article  CAS  Google Scholar 

  2. Dasari MA, Kiatsimkul PP, Sutterlin WR, Suppes GJ (2005) Appl Catal A-Gen 281:225–231

    Article  CAS  Google Scholar 

  3. Dermibas A (2009) Energ Sour Part A 31:1770–1776

    Article  Google Scholar 

  4. Negi DS, Sobotka F, Kimmel T, Wozny G, Schomäcker R (2007) J Am Oil Chem Soc 84:83–90

    Article  CAS  Google Scholar 

  5. Watanabe M, Iida T, Aizawa Y, Aida TM, Inomata H (2007) Bioresour Technol 98:1285–1290

    Article  CAS  Google Scholar 

  6. Tsukuda E, Sato S, Takahashi R, Sodesawa T (2007) Catal Commun 8:1349–1353

    Article  CAS  Google Scholar 

  7. Demirel S, Lehnert K, Lucas M, Claus P (2007) Appl Catal B-Environ 70:637–643

    Article  CAS  Google Scholar 

  8. Yuan Z, Wang J, Wang L, Xie W, Chen P, Hou Z, Zheng X (2010) Bioresour Technol 101:7088–7092

    Article  CAS  Google Scholar 

  9. Jiménez-Morales I, Vila R, Mariscal R, Jiménez-López A (2012) Appl Catal B-Environ 117–118:253–259

    Article  Google Scholar 

  10. Yuan Z, Wang L, Wang J, Xia X, Chen P, Hou Z, Zheng X (2011) Appl Catal B-Environ 101:431–440

    Article  CAS  Google Scholar 

  11. Mane RB, Kondawar SE, Niphadkar PS, Joshi PN, Patil KR, Rode CV (2012) Catal Today 198:321–329

    Article  CAS  Google Scholar 

  12. Malyaadri M, Jagadeeswaraiah K, Sai Prasad PS, Lingaiah N (2011) Appl Catal A 401:153–157

    Article  CAS  Google Scholar 

  13. Brandner A, Lehnert K, Bienholz A, Lucas M, Claus P (2009) Top Catal 52:278–287

    Article  CAS  Google Scholar 

  14. Alhanash A, Kozhevnikova EF, Kozhenikov IV (2008) Catal Lett 120:307–311

    Article  CAS  Google Scholar 

  15. Wang S, Liu H (2007) Catal Lett 117:62–67

    Article  CAS  Google Scholar 

  16. Kim ND, Oh S, Joo JB, Jung KS, Yi J (2010) Top Catal 53:517–522

    Article  CAS  Google Scholar 

  17. Wu Z, Mao Y, Song M, Yin X, Zhang M (2013) Catal Commun 32:52–57

    Article  Google Scholar 

  18. Wu Z, Mao Y, Wang X, Zhang M (2011) Green Chem 13:1311–1316

    Article  CAS  Google Scholar 

  19. Maris EP, Davis RJ (2007) J Catal 249:328–337

    Article  CAS  Google Scholar 

  20. Hirai T, Ikenaga N, Miyake T, Suzuki T (2005) Energ Fuel 19:1761–1762

    Article  CAS  Google Scholar 

  21. Montassier C, Ménézo JC, Hoang LC, Renaud C, Barbier J (1991) J Mol Catal 70:99–110

    Article  CAS  Google Scholar 

  22. Zheng J, Zhu W, Ma C, Hou Y, Zhang W, Wang Z (2010) Reac Kinet Mech Cat 99:455–462

    Article  CAS  Google Scholar 

  23. Akiyama M, Sato S, Takahashi R, Inui K, Yokota M (2009) Appl Catal A 371:60–66

    Article  CAS  Google Scholar 

  24. Niu L, Wei R, Jiang F, Zhou M, Liu C, Xiao G (2014) Reac Kinet Mech Cat 113:543–556

    Article  CAS  Google Scholar 

  25. Niu L, Wei R, Li C, Gao L, Zhou M, Jiang F, Xiao G (2015) Reac Kinet Mech Cat In press

  26. Yue C-J, Gu L-P, Su Y, Zhu S-Z (2014) Reac Kinet Mech Cat 111:633–645

    Article  CAS  Google Scholar 

  27. Alejandre A, Medina F, Rodriguez X, Salagre P, Sueiras JE (1999) J Catal 188:311–324

    Article  CAS  Google Scholar 

  28. Busetto C, Del Piero G, Manara G, Trifiro F, Vaccari A (1984) J Catal 85:260–266

    Article  Google Scholar 

  29. Meher LC, Gopinath R, Naik SN, Dalai AK (2009) Ind Eng Chem Res 48:1840–1846

    Article  CAS  Google Scholar 

  30. Velu S, Swamy CS (1996) Appl Catal A 145:141–153

    Article  CAS  Google Scholar 

  31. Volanti DP, Keyson D, Cavalcante LS, Simoes AS, Joya MR, Longo E, Varela JA, Pizani PS, Souza AG (2008) J Alloy Compd 459:537–542

    Article  CAS  Google Scholar 

  32. Mane RB, Hengne AM, Ghalwadkar AA, Vijayanand S, Mohite PH, Potdar HS, Rode CV (2010) Catal Lett 135:141–147

    Article  CAS  Google Scholar 

  33. Miró EE, Lombardo EA, Petunchi JO (1987) J Catal 104:176–185

    Article  Google Scholar 

  34. Biesinger MC, Lau LWM, Gerson AR, Smart R (2010) Appl Surf Sci 257:887–898

    Article  CAS  Google Scholar 

  35. Alejandre A, Medina F, Salagre P, Correig X, Sueiras JE (1999) Chem Mater 11:939–948

    Article  CAS  Google Scholar 

  36. Yamaoka T, Abe M, Tsuji M (1989) Mater Res Bull 24:1183–1199

    Article  CAS  Google Scholar 

  37. Posati T, Melucci M, Benfenati V, Durso M, Noccheti M, Cavallini S, Toffanin S, Sagnella A, Pistone A, Muccini M, Ruani G, Zamboni R (1847) RSC Adv 4:11840–11841

    Article  Google Scholar 

  38. Sato S, Akiyama M, Takahashi R, Hara T, Inui K, Yokota M (2008) Appl Catal A 347:186–191

    Article  CAS  Google Scholar 

  39. Wang S, Liu H (2014) Chin J Catal 35:631–643

    Article  Google Scholar 

  40. Chheda JN, Huber GW, Dumesic JA (2007) Angew Chem Int Ed 46:7164–7183

    Article  CAS  Google Scholar 

  41. Huber GW, Cortright RD, Dumesic JA (2004) Angew Chem Int Ed 43:1549–1551

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank to the TEM and XPS Laboratories at Centro de Nanociencias y Micro y Nanotecnologías (CNMN) at Instituto Politécnico Nacional (IPN) for provided services in the present work. Authors also thank to SECITI-DF for economical support through the Project No. PICCO 10-121.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Trejo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valencia, R., Tirado, J.A., Sotelo, R. et al. Synthesis of 1,2-propanediol through glycerol hydrogenolysis on Cu–Al mixed oxides. Reac Kinet Mech Cat 116, 205–222 (2015). https://doi.org/10.1007/s11144-015-0885-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-015-0885-5

Keywords

Navigation