Reaction Kinetics, Mechanisms and Catalysis

, Volume 115, Issue 2, pp 759–772 | Cite as

Photodegradation of dyes by a novel TiO2/u-RuO2/GNS nanocatalyst derived from Ru/GNS after its use as a catalyst in the aerial oxidation of primary alcohols (GNS = graphene nanosheets)

  • Mayakrishnan Gopiraman
  • Sundaram Ganesh Babu
  • Zeeshan Khatri
  • Byoung-Suhk Kim
  • Kai Wei
  • Ramasamy Karvembu
  • Ick Soo KimEmail author


Ruthenium nanoparticles (RuNPs) supported on graphene nanosheets (GNS), a composite (Ru/GNS), were prepared by a dry synthesis method and were used as nanocatalysts for the aerial oxidation of various primary alcohols. Ru/GNS was highly efficient, selective, stable and heterogeneous in nature. Owing to the high stability of the used catalyst (u-Ru/GNS), it was further applied in a different catalytic system viz photocatalytic degradation, after suitable modifications. We have obtained a novel TiO2/u-RuO2/GNS catalyst from u-Ru/GNS by the sol-gel method. The catalytic activity of TiO2/u-RuO2/GNS toward the photodegradation of methyl orange (MO) and acridine orange (AO) was found to be excellent. Overall, the sustainable use of these recyclable materials (Ru/GNS and TiO2/u-RuO2/GNS) could lead to economic and environmental benefits.


Graphene nanosheets Ruthenium oxide nanoparticles Aerial oxidation Recycling Titania Photocatalytic degradation 



This work was supported by the Grant-in-Aid for Global COE program by the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

Supplementary material

11144_2015_861_MOESM1_ESM.doc (1.1 mb)
Supplementary material 1 (DOC 1134 kb)


  1. 1.
    Serp P, Figueiredo JL (eds) (2009) Carbon materials for catalysis. Wiley, HobokenGoogle Scholar
  2. 2.
    Rodriguez-Reinoso F (1998) Carbon 36:159–175CrossRefGoogle Scholar
  3. 3.
    Jiang Y, Lu Y, Lv X, Han D, Zhang Q, Niu L, Chen W (2013) ACS Catal 3:1263–1271CrossRefGoogle Scholar
  4. 4.
    Sakthivel S, Kisch H (2003) Angew Chem Int Ed 42:4908–4911CrossRefGoogle Scholar
  5. 5.
    Faria JL, Wang W (2009) Carbon materials in photocatalysis, carbon materials for catalysis. Wiley, Hoboken, pp 481–506Google Scholar
  6. 6.
    Mondal A, Jana NR (2014) ACS Catal 4:593–599CrossRefGoogle Scholar
  7. 7.
    Xiang Q, Yu J, Jaronie M (2012) Chem Soc Rev 41:782–796CrossRefGoogle Scholar
  8. 8.
    Gopiraman M, Ganesh Babu S, Khatri Z, Wei K, Kim YA, Endo M, Karvembu M, Kim IS (2013) J Phys Chem C 117:23582–23596CrossRefGoogle Scholar
  9. 9.
    Gopiraman M, Ganesh Babu S, Khatri Z, Wei K, Morinobu E, Karvembu R, Kim IS (2013) Catal Sci Technol 3:1485–1489CrossRefGoogle Scholar
  10. 10.
    Gopiraman M, Bang H, Ganesh Babu S, Wei K, Karvembu K, Kim IS (2014) Catal Sci Technol 4:2099–2106CrossRefGoogle Scholar
  11. 11.
    Perera SD, Mariano RG, Vu K, Nour N, Seitz O, Chabal Y, Balkus KJ (2012) ACS Catal 2:949–956CrossRefGoogle Scholar
  12. 12.
    Stengl V, Popelkov D, Vlacil P (2011) J Phys Chem C 115:25209–25218CrossRefGoogle Scholar
  13. 13.
    Fotiou T, Triantis TM, Kaloudis T, Pastrana-Martínez LM, Likodimos V, Falaras P, Silva AMT, Hiskia A (2013) Ind Eng Chem Res 52:13991–14000Google Scholar
  14. 14.
    He D, Kou Z, Xiong Y, Cheng K, Chen X, Pan M, Mu S (2014) Carbon 66:312–319CrossRefGoogle Scholar
  15. 15.
    Xiong Z, Zhang LL, Ma J, Zhao XS (2010) Chem Commun 46:6099–6101CrossRefGoogle Scholar
  16. 16.
    Goto M (2009) J Supercrit Fluids 47:500–507CrossRefGoogle Scholar
  17. 17.
    Adschiri T, Lee KW, Goto M, Takami S (2011) Green Chem 13:1380–1390CrossRefGoogle Scholar
  18. 18.
    Pimenta S, Pinho ST (2011) Waste Manag 31:378–392CrossRefGoogle Scholar
  19. 19.
    Princaud M, Aymonier C, Loppinet-Serani A, Perry N, Sonnemann G (2014) ACS Sustain Chem Eng 2:1498–1502CrossRefGoogle Scholar
  20. 20.
    Gopiraman M, Karvembu R, Kim IS (2014) ACS Catal 4:2118–2129CrossRefGoogle Scholar
  21. 21.
    Gopiraman M, Ganesh Babu S, Khatri Z, Kai W, Kim YA, Endo M, Karvembu R, Kim IS (2013) Carbon 62:135–148CrossRefGoogle Scholar
  22. 22.
    Yasunobu I, Takao N, Yoshihiro A, Kazunori S (1992) J Chem Soc Chem Commun 7:579–580Google Scholar
  23. 23.
    Xie Y, Chen F, He J, Zhao J, Wang H (2000) J Photochem Photobiol A 136:235–240CrossRefGoogle Scholar
  24. 24.
    Faisal M, Tariq MA, Muneer M (2007) Dyes Pigm 72:233–239CrossRefGoogle Scholar
  25. 25.
    Li G, Ciston V, Saponjic ZV, Chen L, Dimitrijevic NM, Rajh T, Gray KA (2008) J Catal 25:105–110CrossRefGoogle Scholar
  26. 26.
    Jiaguo Y, Xiujian Z, Qingnan Z (2001) Mater Chem Phys 69:25–29CrossRefGoogle Scholar
  27. 27.
    Kamimura A, Nozaki Y, Nishiyama M, Nakayama M (2013) RSC Adv 3:468–472CrossRefGoogle Scholar
  28. 28.
    Emayavaramban P, Ganesh Babu S, Karvembu R, Dharmaraj N (2014) Adv Sci Eng Med 6:659–666CrossRefGoogle Scholar
  29. 29.
    Ganesh Babu S, Krishnamoorthi S, Thiruneelakandan R, Karvembu R (2014) Catal Lett 144:1245–12520CrossRefGoogle Scholar
  30. 30.
    Mancuso AJ, Huang SL, Swern DJ (1987) J Org Chem 43:2480–2482CrossRefGoogle Scholar
  31. 31.
    Liang W, Xiangju M, Fengshou X (2010) Chin J Catal 31:943–947CrossRefGoogle Scholar
  32. 32.
    Ruan S, Wu F, Zhang T, Gao W, Xu B, Zhao M (2001) Mater Chem Phys 69:7–9CrossRefGoogle Scholar
  33. 33.
    Nagaveni K, Hegde MS, Ravishankar N, Subbanna GN, Madras G (2004) Langmuir 20:2900–2907CrossRefGoogle Scholar
  34. 34.
    Luo LJ, Zhang XJ, Ma FJ, Zhang AL, Bian LC, Pan XJ, Jiang FZ (2015) Reac Kinet Mech Cat 114:311–322CrossRefGoogle Scholar
  35. 35.
    Peining Z, Nair SA, Shengjie P, Shengyuan Y, Ramakrishna S (2012) ACS Appl Mater Interfaces 4:581–585CrossRefGoogle Scholar
  36. 36.
    Ibhadon AO, Greenway GM, Yue Y (2008) Catal Commun 9:153–157CrossRefGoogle Scholar
  37. 37.
    Lu CS, Mai FD, Wu CW, Wu RJ, Chen CC (2008) Dyes Pigm 76:706–713CrossRefGoogle Scholar
  38. 38.
    Chen H, Jin X, Zhu K, Yang R (2002) Water Res 36:4106–4112CrossRefGoogle Scholar
  39. 39.
    Chen CC, Wu RJ, Tzeng YY, Lu CS (2009) J Chin Chem Soc 56:1147–1155CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Mayakrishnan Gopiraman
    • 1
  • Sundaram Ganesh Babu
    • 1
    • 2
  • Zeeshan Khatri
    • 1
  • Byoung-Suhk Kim
    • 3
  • Kai Wei
    • 4
  • Ramasamy Karvembu
    • 5
  • Ick Soo Kim
    • 1
    Email author
  1. 1.Nano Fusion Technology Research Lab, Division of Frontier Fibers, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER)National University Corporation Shinshu UniversityNaganoJapan
  2. 2.SRM Research InstituteSRM UniversityKattankulathurIndia
  3. 3.Department of Organic Materials & Fiber EngineeringChonbuk National UniversityJeonjuRepublic of Korea
  4. 4.College of Textile Clothing EngineeringSoochow UniversitySuzhouChina
  5. 5.Department of ChemistryNational Institute of TechnologyTiruchirappalliIndia

Personalised recommendations