Skip to main content
Log in

Influence of nitridation on the catalytic performance of Ti-MCM-41 for the epoxidation of propene by cumene hydroperoxide

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Ti-MCM-41 samples were nitridated with NH3 in different conditions and characterized by CHN elemental analysis, XRD, N2 adsorption, Py-IR and UV–Vis. The influence of nitridation conditions on crystallinity, structure and N content was investigated. The N content increased with nitridating temperature, and all samples retained a hexagonal structure. A higher nitridating temperature caused a shrink in the Ti-MCM-41 pores. The epoxidation of propene with cumene hydroperoxide (CHP) catalyzed by these Ti-MCM-41 catalysts in a fixed-bed reactor was studied. Though the CHP conversion fell from 70.6 % to 64.7 % on the Ti-MCM-41 catalyst nitridated at 400 °C for 4 h without calcining template, the CHP efficiency increased from 60.2 % to 79.6 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nijhuis TA, Makkee M, Moulijn JA, Weckhuysen BM (2006) The production of propene oxide: catalytic processes and recent developments. Ind Eng Chem Res 45(10):3447–3459

    Article  CAS  Google Scholar 

  2. Cavani F, Gaffney AM (2009) Synthesis of propene oxide: a successful example of sustainable industrial chemistry. In: Cavani F, Centi G, Perathoner S, Trifiro F (eds) Sustainable industrial processes. Wiley-VCH, Weinheim

    Chapter  Google Scholar 

  3. Duzenli D, Seker E, Senkan S, Onal I (2012) Epoxidation of propene by high-throughput screening method over combinatorially prepared cu catalysts supported on high and low surface area silica. Catal Lett 142(10):1234–1243

    Article  CAS  Google Scholar 

  4. Wang J, Liu M, Guo X, Wu H, Xu J, Lu W (2010) Gas-phase propene epoxidation over Ag/TS-1 prepared by plasma sputtering. React Kinet Mech Catal 102(2):447–457

    Article  Google Scholar 

  5. Buijink JKF, van Vlaanderen J, Crocker A, Niele EM (2004) Propylene epoxidation over titanium-on-silica catalyst—the heart of the SMPO process. Catal Today 93–5:199–204

    Article  Google Scholar 

  6. Ivanov S, Boeva R, Tanielyan S (1976) Catalytic epoxidation of propylene with tert-butyl peroxide in presence of molybdenum complexes on polymer carriers. React Kinet Catal Lett 5(3):297–301

    Article  CAS  Google Scholar 

  7. Leonov VN, Belyi AA, Stozhkova GA, Erman MB, Bobylev BN, Volpin ME (1988) Catalytic properties of molybdenum-siloxane systems in the reaction of epoxidation of propene by cumene hydroperoxide. Bull Acad Sci USSR Div Chem Sci 37(9):1765–1768

    Article  Google Scholar 

  8. Miao YX, Lu GZ, Liu XH, Guo YL, Wang YQ, Guo Y (2009) Effects of preparation procedure in sol-gel method on performance of MoO3/SiO2 catalyst for liquid phase epoxidation of propylene with cumene hydroperoxide. J Mol Catal A 306(1–2):17–22

    Article  CAS  Google Scholar 

  9. Khedher I, Ghorbel A (2010) The oxidation of sulfide to sulfoxide on Ti-complex/MCM-41 catalyst. J Porous Mater 17(4):501–507

    Article  CAS  Google Scholar 

  10. Corma A, Navarro MT, Pariente JP (1994) Synthesis of an ultralarge pore titanium silicate isomorphous to MCM-41 and its application as a catalyst for selective oxidation of hydrocarbons. J Chem Soc Chem Commun 2:147–148

    Article  Google Scholar 

  11. Koyano KA, Tatsumi T (1996) Synthesis of titanium-containing mesoporous molecular sieves with a cubic structure. Chem Commun 2:145–146

    Article  Google Scholar 

  12. Ye X, Jiang P, Zhang P, Dong Y, Jia C, Zhang X, Xu H (2010) Novel Ti and Mn mesoporous molecular sieves: synthesis, characterization and catalytic activity in the epoxidation of vegetable oil. Catal Lett 137(1):88–93

    Article  CAS  Google Scholar 

  13. Bagshaw SA, Di Renzo F, Fajula F (1996) Preparation of metal-incorporated MSU mesoporous silica molecular sieves. Ti incorporation via a totally non-ionic route. Chem Commun 18:2209–2210

    Article  Google Scholar 

  14. Blasco T, Corma A, Navarro MT, Pariente JP (1995) Synthesis, characterization, and catalytic activity of Ti-MCM-41 structures. J Catal 156(1):65–74

    Article  CAS  Google Scholar 

  15. Li KT, Lin CC (2004) Propylene epoxidation over Ti/MCM-41 catalysts prepared by chemical vapor deposition. Catal Today 97(4):257–261

    Article  CAS  Google Scholar 

  16. Zhuang J, Yan Z, Liu X, Liu X, Han X, Bao X, Mueller U (2002) NMR study on the acidity of TS-1 Zeolite. Catal Lett 83(1–2):87–91

    Article  CAS  Google Scholar 

  17. Xia Y, Mokaya R (2004) Ordered mesoporous MCM-41 silicon oxynitride solid base materials with high nitrogen content: synthesis, characterisation and catalytic evaluation. J Mater Chem 14(16):2507–2515

    Article  CAS  Google Scholar 

  18. Shang F, Liu H, Sun J, Liu B, Wang C, Guan J, Kan Q (2011) Synthesis, characterization and catalytic application of bifunctional catalyst: Al-MCM-41-NH2. Catal Commun 12(8):739–743

    Article  CAS  Google Scholar 

  19. Xia Y, Mokaya R (2003) Highly ordered mesoporous silicon oxynitride materials as base catalysts. Angew Chem Int Ed 42(23):2639–2644

    Article  CAS  Google Scholar 

  20. Wan K, Liu Q, Zhang C (2003) Synthesis of highly ordered mesoporous silicon oxynitride with high nitrogen content. Chem Lett 32(4):362–363

    Article  CAS  Google Scholar 

  21. Corma A, Viruela P, Fernández L (1998) Structural incorporation of nitrogen into zeolites, and alpos: ab initio molecular orbital calculations on stability and basicity. J Mol Catal A 133(3):241–250

    Article  CAS  Google Scholar 

  22. Zhao Y, Qi Y, Wei Y, Zhang Y, Zhang S, Yang Y, Liu Z (2008) Incorporation of Ag nanostructures into channels of nitrided mesoporous silica. Microporous Mesoporous Mater 111(1–3):300–306

    Article  CAS  Google Scholar 

  23. Brunauer S, Deming LS, Deming WE, Teller E (1940) On a theory of the van der Waals adsorption of gases. J Am Chem Soc 62(7):1723–1732

    Article  CAS  Google Scholar 

  24. Alba MD, Luan Z, Klinowski J (1996) Titanosilicate mesoporous molecular sieve MCM-41: synthesis and characterization. J Phys Chem 100(6):2178–2182

    Article  CAS  Google Scholar 

  25. Boccuti MR, Rao KM, Zecchina A, Leofanti G, Petrini G (1989) Stud Surf Sci Catal 48:133–144

    Article  Google Scholar 

  26. Lin W, Frei H (2002) Photochemical and FT-IR probing of the active site of hydrogen peroxide in Ti Silicalite sieve. J Am Chem Soc 124(31):9292–9298

    Article  CAS  Google Scholar 

  27. Chen J, Li Q, Xu R, Xiao F (1996) Distinguishing the silanol groups in the mesoporous molecular sieve MCM-41. Angew Chem Int Ed 34(23–24):2694–2696

    Article  Google Scholar 

  28. Wiame H, Cellier C, Grange P (2000) Identification of the basic site on the aluminovanadate oxynitride catalysts. J Catal 190(2):406–418

    Article  CAS  Google Scholar 

  29. Emeis CA (1993) Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts. J Catal 141(2):347–354

    Article  CAS  Google Scholar 

  30. Xue B, Xu J, Xu C, Wu R, Li Y, Zhang K (2010) A novel, shape-selective H-MCM-22/MCM-41 composite catalyst: synthesis, characterization and catalytic performance. Catal Commun 12(2):95–99

    Article  CAS  Google Scholar 

  31. Zecchina A, Spoto G, Bordiga S, Ferrero A, Petrini G, Leofanti G, Padovan M (1991) Stud Surf Sci Catal 69:251–258

    Article  CAS  Google Scholar 

  32. Blasco T, Camblor MA, Corma A, Perez-Pariente J (1993) The state of Ti in titanoaluminosilicates isomorphous with zeolite beta. J Am Chem Soc 115(25):11806–11813

    Article  CAS  Google Scholar 

  33. Yu JQ, Feng ZC, Xu L, Li MJ, Xin Q, Liu ZM, Li C (2001) Ti-MCM-41 synthesized from colloidal silica and titanium trichloride: synthesis, characterization, and catalysis. Chem Mater 13(3):994–998

    Article  CAS  Google Scholar 

  34. de la Peña O’Shea VA, Capel-Sanchez M, Blanco-Brieva G, Campos-Martin JM, Fierro JLG (2003) The usefulness of time-dependent density functional theory to describe the electronic spectra of Ti-containing catalysts. Angew Chem Int Ed 42(47):5851–5854

    Article  Google Scholar 

  35. Bordiga S, Damin A, Bonino F, Zecchina A, Spanò G, Rivetti F, Bolis V, Prestipino C, Lamberti C (2002) Effect of interaction with H2O and NH3 on the vibrational, electronic, and energetic peculiarities of Ti(IV) Centers TS-1 catalysts: a spectroscopic and computational study. J Phys Chem B 106(38):9892–9905

    Article  CAS  Google Scholar 

  36. Eimer GA, Casuscelli SG, Chanquia CM, Elías V, Crivello ME, Herrero ER (2008) The influence of Ti-loading on the acid behavior and on the catalytic efficiency of mesoporous Ti-MCM-41 molecular sieves. Catal Today 133–135:639–646

    Article  Google Scholar 

  37. Kharasch MS, Fono A, Nudenberg W (1950) The chemistry of hydroperoxides I. The acid-catalyzed decompositon of α, α-dimethylbenzyl (α-Cumyl) hydroperoxide. J Org Chem 15(4):748–752

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolei Ni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Ni, X. & Hu, Y. Influence of nitridation on the catalytic performance of Ti-MCM-41 for the epoxidation of propene by cumene hydroperoxide. Reac Kinet Mech Cat 114, 685–695 (2015). https://doi.org/10.1007/s11144-014-0803-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-014-0803-2

Keywords

Navigation