Skip to main content
Log in

Preparation of efficient ruthenium catalysts for ammonia synthesis via high surface area graphite dispersion

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

High surface area graphite (HSAG) was tested as a support of ruthenium catalyst for ammonia synthesis. As it is in the form of fine powder, it can be dispersed in the ruthenium precursor solution achieving high dispersion of Ru and efficiency. The surface area, porosity, crystalline structure of support, morphology, dispersion of Ru, desorption of H2 and N2 and methanation of the catalyst were investigated by N2 physisorption, XRD, SEM, TEM and TPD/TPSR techniques. The results show that higher ammonia synthesis rates of the HASG catalyst compared to activated carbon can be achieved with the assistance of ultrasonic treatment. As expected, the methanation rate over HSAG is much lower than that of activated carbon over the whole temperature range studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Aika K, Hori H, Ozaki A (1972) Activation of nitrogen by alkali metal promoted transition metal I. Ammonia synthesis over ruthenium promoted by alkali metal. J Catal 27(3):424–431

    Article  CAS  Google Scholar 

  2. Murata S, Aika K, Onishi T (1990) Lanthanide nitrates as effective promoters of a Ru/Al2O3 catalyst for ammonia-synthesis. Chem Lett 7:1067–1068

    Article  Google Scholar 

  3. Szmigiel D, Rarog-Pilecka W, Miskiewicz E, Glinski M, Kielak M, Kaszkur M, Kowalczyk Z (2004) Ammonia synthesis over ruthenium catalysts supported on high surface area MgO and MgO–Al2O3 systems. Appl Catal A 273(1–2):105–112

    Article  CAS  Google Scholar 

  4. Lin J, Zhang L, Wang Z, Ni J, Wang R, Wei K (2013) The effect of Ag as a promoter for Ru/CeO2 catalysts in ammonia synthesis. J Mol Catal A 366:375–379

    Article  CAS  Google Scholar 

  5. Wang Z, Lin J, Wang R, Wei K (2013) Ammonia synthesis over ruthenium catalyst supported on perovskite type BaTiO3. Catal Commun 32:11–14

    Article  Google Scholar 

  6. Jacobsen CJH (2001) Boron nitride: a novel support for ruthenium-based ammonia synthesis catalysts. J Catal 200(1):1–3

    Article  CAS  Google Scholar 

  7. Li Y, Pan CG, Han WF, Chai HF, Liu HZ (2011) An efficient route for the preparation of activated carbon supported ruthenium catalysts with high performance for ammonia synthesis. Catal Today 174(1):97–105

    Article  CAS  Google Scholar 

  8. Forni L, Molinari D, Rossetti I, Pernicone N (1999) Carbon-supported promoted Ru catalyst for ammonia synthesis. Appl Catal A 185(2):269–275

    Article  CAS  Google Scholar 

  9. Kowalczyk Z, Sentek J, Jodzis S, Mizera E, Góralski J, Paryjczak T, Diduszko R (1997) An alkali-promoted ruthenium catalyst for the synthesis of ammonia, supported on thermally modified active carbon. Catal Lett 45(1–2):65–72

    Article  CAS  Google Scholar 

  10. Zheng XL, Zhang SJ, Xu JX, Wei KM (2002) Effect of thermal and oxidative treatments of activated carbon on its surface structure and suitability as a support for barium-promoted ruthenium in ammonia synthesis catalysts. Carbon 40(14):2597–2603

    Article  CAS  Google Scholar 

  11. Zhu H, Han WF, Liu HZ (2007) Influence of oxidation on heat-treated activated carbon support properties and metallic dispersion of Ru/C catalyst. Catal Lett 115(1–2):13–18

    Article  CAS  Google Scholar 

  12. Alan I. Foster, Peter G. James, John J. McCarroll, Tennison SR (1979) Process for the synthesis of ammonia using catalysts supported on graphite containing carbon. US Patent US4163775-A

  13. Brown DE, Edmonds T, Joyner RW, McCarroll JJ, Tennison SR (2014) The genesis and development of the commercial BP doubly promoted catalyst for ammonia synthesis. Catal Lett 144(4):545–552

    Article  CAS  Google Scholar 

  14. Diaz E, Ordonez S, Bueres RF, Asedegbega-Nieto E, Sastre H (2010) High-surface area graphites as supports for hydrodechlorination catalysts: Tuning support surface chemistry for an optimal performance. Appl Catal B Environ 99(1–2):181–190

    Article  CAS  Google Scholar 

  15. Bachiller-Baeza B, Guerrero-Ruiz A, Wang P, Rodriguez-Ramos I (2001) Hydrogenation of citral on activated carbon and high-surface-area graphite-supported ruthenium catalysts modified with iron. J Catal 204(2):450–459

    Article  CAS  Google Scholar 

  16. Sorensen RZ, Klerke A, Quaade U, Jensen S, Hansen O, Christensen CH (2006) Promoted Ru on high-surface area graphite for efficient miniaturized production of hydrogen from ammonia. Catal Lett 112(1–2):77–81

    Article  CAS  Google Scholar 

  17. Ferreira-Aparicio P, Folgado MA, Daza L (2009) High surface area graphite as alternative support for proton exchange membrane fuel cell catalysts. J Power Sources 192(1):57–62

    Article  CAS  Google Scholar 

  18. Li HQ, Wang YG, Wang CX, Xia YY (2008) A competitive candidate material for aqueous supercapacitors: High surface-area graphite. J Power Sources 185(2):1557–1562

    Article  CAS  Google Scholar 

  19. Xu QC, Lin JD, Li J, Fu XZ, Yang ZW, Guo WM, Liao DW (2006) Combination and interaction of ammonia synthesis ruthenium catalysts. J Mol Catal A Chem 259(1–2):218–222

    Article  CAS  Google Scholar 

  20. Zheng W, Zhang J, Zhu B, Blume R, Zhang Y, Schlichte K, Schlögl R, Schüth F, Su DS (2010) Structure-function correlations for Ru/CNT in the catalytic decomposition of ammonia. ChemSusChem 3(2):226–230

    Article  CAS  Google Scholar 

  21. Kowalczyk Z, Jodzis S, Raróg W, Zieliński J, Pielaszek J, Presz A (1999) Carbon-supported ruthenium catalyst for the synthesis of ammonia. The effect of the carbon support and barium promoter on the performance. Appl Catal A 184(1):95–102

    Article  CAS  Google Scholar 

  22. Wang S, Lu G (1998) Effects of acidic treatments on the pore and surface properties of Ni catalyst supported on activated carbon. Carbon 36(3):283–292

    Article  CAS  Google Scholar 

  23. Stöhr B, Boehm H, Schlögl R (1991) Enhancement of the catalytic activity of activated carbons in oxidation reactions by thermal treatment with ammonia or hydrogen cyanide and observation of a superoxide species as a possible intermediate. Carbon 29(6):707–720

    Article  Google Scholar 

  24. Yudanov IV, Genest A, Schauermann S, Freund H-J, Rösch N (2012) Size dependence of the adsorption energy of CO on metal nanoparticles: a DFT search for the minimum value. Nano Lett 12(4):2134–2139

    Article  CAS  Google Scholar 

  25. Mezohegyi G, van der Zee FP, Font J, Fortuny A, Fabregat A (2012) Towards advanced aqueous dye removal processes: a short review on the versatile role of activated carbon. J Environ Manag 102:148–164

    Article  CAS  Google Scholar 

  26. Kuila T, Bose S, Mishra AK, Khanra P, Kim NH, Lee JH (2012) Chemical functionalization of graphene and its applications. Prog Mater Sci 57(7):1061–1105

    Article  CAS  Google Scholar 

  27. Dooling DJ, Broadbelt LJ (1997) Investigation of the structure sensitivity of nitrogen adsorption on single crystal ruthenium clusters using density functional theory. Stud Surf Sci Catal 109:251–259

    Article  CAS  Google Scholar 

  28. Jacobsen CJH, Dahl S, Hansen PL, Törnqvist E, Jensen L, Topsøe H, Prip DV, Møenshaug PB, Chorkendorff I (2000) Structure sensitivity of supported ruthenium catalysts for ammonia synthesis. J Mol Catal A Chem 163(1–2):19–26

    Article  CAS  Google Scholar 

  29. Rarog-Pilecka W, Miskiewicz E, Szmigiel D, Kowalczyk Z (2005) Structure sensitivity of ammonia synthesis over promoted ruthenium catalysts supported on graphitised carbon. J Catal 231(1):11–19

    Article  CAS  Google Scholar 

  30. Izumi Y, Iwata Y, Aika K (1996) Catalysis on ruthenium clusters supported on CeO2 or Ni-doped CeO2: Adsorption behavior of H2 and ammonia synthesis. J Phys Chem 100(22):9421–9428

    Article  CAS  Google Scholar 

  31. Rosowski F, Hornung A, Hinrichsen O, Herein D, Muhler M, Ertl G (1997) Ruthenium catalysts for ammonia synthesis at high pressures: Preparation, characterization, and power-law kinetics. Appl Catal A 151(2):443–460

    Article  CAS  Google Scholar 

  32. Han WF, Zhao B, Huo C, Liu HZ (2004) Effect of activated carbon and its surface property on the activity of Ru/AC catalyst. Chin J Catal 25(3):194–198

    Google Scholar 

  33. Han WF, Liu HZ, Zhu H (2007) Effect of activated carbon on the dispersion of Ru and K over supported Ru-based catalyst for ammonia synthesis. Catal Commun 8(3):351–354

    Article  CAS  Google Scholar 

  34. Zheng XL, Zhang SJ, Lin JX, Xu JX, Fu WJ, Wei KM (2002) Effect of activated carbon as a support on metal dispersion and activity of ruthenium catalyst for ammonia synthesis. Chem Res Chin U 18(4):448–452

    CAS  Google Scholar 

  35. Yu FW, Ji JB, Huo C, Han WF, Li XN, Liu HZ (2006) Effect of ultrasonic frequency on structure of activated carbon and activity of Ru/AC catalyst for ammonia synthesis. Chin J Catal 27(6):511–514

    CAS  Google Scholar 

  36. Choi W, Lahiri I, Seelaboyina R, Kang YS (2010) Synthesis of graphene and its applications: a review. Crit Rev Solid State Mater Sci 35(1):52–71

    Article  CAS  Google Scholar 

  37. Zeng HS, Hihara T, Inazu K, Aika KI (2001) Effect of methanation of active carbon support on the barium-promoted ruthenium catalyst for ammonia synthesis. Catal Lett 76(3–4):193–199

    Article  CAS  Google Scholar 

  38. Kowalczyk Z, Jodzis S, Raróg W, Zieliński J, Pielaszek J (1998) Effect of potassium and barium on the stability of a carbon-supported ruthenium catalyst for the synthesis of ammonia. Appl Catal A 173(2):153–160

    Article  CAS  Google Scholar 

  39. Zhou CH, Zhu YF, Liu HZ (2010) Effect of samarium on methanation resistance of activated carbon supported ruthenium catalyst for ammonia synthesis. J Rare Earth 28(4):552–555

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial supports from the Natural Science Foundation of China (NSFC Grant No. 20803064) and Natural Science Foundation of Zhejiang Provence (Y4090348) are gratefully acknowledged. The authors are grateful to the Timcal Graphite & Carbon for providing HSAG samples. Thanks are extended to Prof. Nicola Pernicone for the fruitful discussion on HSAG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huazhang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, W., Yan, H., Tang, H. et al. Preparation of efficient ruthenium catalysts for ammonia synthesis via high surface area graphite dispersion. Reac Kinet Mech Cat 113, 361–374 (2014). https://doi.org/10.1007/s11144-014-0752-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-014-0752-9

Keywords

Navigation