Skip to main content
Log in

Interaction between Cs and Ni2P/SiO2 for enhancing isobutane dehydrogenation in the presence of hydrogen

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A series of 10 wt% Ni2P/SiO2 catalysts with cesium loading from 0 to 7.5 wt% were prepared by means of temperature-programmed reduction, and the effects of the cesium addition on the catalytic properties of the Ni2P/SiO2 catalyst for isobutane dehydrogenation have been investigated by reaction tests and some physicochemical characterizations such as TEM, XRD, H2-TPR, XPS, H2-TPD, NH3-TPD. It was found that cesium exists as CsOH on the catalyst surface, which partly covers the Ni2P surface or boundaries between Ni2P and SiO2 to decrease the acid strength and acid site number. XPS analysis suggests that Cs acts as an electronic promoter to Ni2P phase. The 6.5 wt% Cs-containing Ni2P/SiO2 catalyst showed the best catalytic performance and stability. After reaction for 4 h, selectivity toward isobutene of higher than 96 % was achieved with the corresponding conversion value of about 6.0 % at 733 K. The enhancement in the catalytic selectivity and stability of the Cs promoted catalysts is attributed to the decrease in acid strength and acid site number and the electrons transfer from Cs to Ni.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1

Similar content being viewed by others

References

  1. Minh CL, Alanazi AK, Miron DJ, Brown TC (2012) Catal Lett 142:1470–1473

    Article  Google Scholar 

  2. Ding JF, Shao R, Wu J, Qin ZF, Wang JG (2010) React Kinet Mech Cat 101:173–181

    Article  CAS  Google Scholar 

  3. Ogonowski J, Skrzynska E (2008) Catal Lett 121:234–240

    Article  CAS  Google Scholar 

  4. Airaksinen SMK, Krause AOI (2005) Ind Eng Chem Res 44:3862–3868

    Article  CAS  Google Scholar 

  5. Tasbihi M, Feyzi F, Amlashi MA, Abdullah AZ (2007) Fuel Process Technol 88:883–889

    Article  CAS  Google Scholar 

  6. Siri GJ, Bertolini GR, Casella ML, Ferretti OA (2005) Mater Lett 59:2319–2324

    Article  CAS  Google Scholar 

  7. Zangeneh FT, Sahebdelfar S, Bahmani M (2005) Chin J Chem Eng 21(7):730–735

    Article  Google Scholar 

  8. Zhang YW, Zhou YM, Sheng XL, Wan LH, Li YJ, Xiao YM, Yu B, Zeng Z (2012) Fuel Process Technol 104:23–30

    Article  CAS  Google Scholar 

  9. Sun GS, Huang QZ, Li HQ, Liu HT, Zhang Z (2011) Chin J Catal 32(8):1424–1429

    CAS  Google Scholar 

  10. Zhao HH, Song HL, Xu LL, Chou L (2013) J Appl Catal A 456:188–196

    Article  CAS  Google Scholar 

  11. Zhao HH, Song HL, Chou LJ (2013) Microporous Mesoporous Mater 181:182–191

    Article  CAS  Google Scholar 

  12. Fu YH, Ma HC, Wang ZL, Wu TH, Wang GJ (2004) J Mol Catal A 21:163–168

    Article  Google Scholar 

  13. Yusaku T, Xia Q, Akihide T, Hiroyasu N, Katsutoshi N (2005) Appl Catal A 296:63–69

    Article  Google Scholar 

  14. Takita Y, Sano KI, Muraya T, Nishiguchi H, Kawata N (1998) Appl Catal A 170:23–31

    Article  CAS  Google Scholar 

  15. Duan YZ, Zhou YM, Zhang YW, Sheng XL (2011) Catal Lett 141:120–127

    Article  CAS  Google Scholar 

  16. Oyama ST (2003) J Catal 216(1–2):343–352

    Article  CAS  Google Scholar 

  17. Xie Y, Su HL, Qian XF, Liu XM, Qian YT (2000) J Solid State Chem 149(1):88–91

    Article  CAS  Google Scholar 

  18. Prins R, Pirngruber G, Weber T (2001) Chimia 55:791–795

    CAS  Google Scholar 

  19. Liao H, Xu XL, Chen WQ, Shi QJ (2012) Acta Phys-Chim Sin 28:2924–2930

    CAS  Google Scholar 

  20. Sawhil SJ, Layman KA, Van Wyk DR, Engelhard MH, Wang CM (2005) J Catal 231(2):300–313

    Article  Google Scholar 

  21. Duan XP, Li X, Wang AJ, Teng Y, Wang Y, Hu YK (2010) Catal Today 149:11–18

    Article  CAS  Google Scholar 

  22. Hensen EJM, De Beer VHJ, Van Veen JAR, Van Santen RAA (2002) Catal Lett 84:59–67

    Article  CAS  Google Scholar 

  23. Hj Martin, Pham DK, Brorson M, Madler L, Jensen AD, Grunwaldt JD (2013) Catal Lett 143:386–394

    Article  Google Scholar 

  24. Kim SB, Choi MJ, Park DC, Lee KW (1991) Korean J Chem Eng 8(3):137–142

    Article  CAS  Google Scholar 

  25. Oyama ST, Wang XG, Requejo F, Sato T, Yoshimura Y (2002) J Catal 209:1–5

    Article  CAS  Google Scholar 

  26. Moriceau PB, Pennequin A, Grzybowska B, Barbaux Y (2003) Appl Catal A 245:55–67

    Article  Google Scholar 

  27. Moriceau P, Grzybowska B, Barbaux Y (1998) Pol J Chem 72:910–915

    CAS  Google Scholar 

  28. Zangeneh FT, Sahebdelfar S (2011) Iranian J Chem Eng 8:48–54

    Article  Google Scholar 

  29. Sun M, Zhang JZ, Cao CJ, Zhang QH, Wang Y, Wan HL (2008) Appl Catal A 349:212–221

    Article  CAS  Google Scholar 

  30. Murata S, Aika KL (1992) J Catal 136:110–117

    Article  CAS  Google Scholar 

  31. Murata S, Aika KL (1992) J Catal 136:118–125

    Article  CAS  Google Scholar 

  32. Briggs D, Seah MP (eds) (1983) Practical surface analysis by auger and X-ray photoelectron spectroscopy. Wiley, New York

    Google Scholar 

  33. Sawhill SJ, Layman KA, Van Wyk DR, Engelhard MH, Wang ChM, Bussell ME (2005) J Catal 231:300–313

    Article  CAS  Google Scholar 

  34. Liu XG, Chen JX, Zhang JY (2008) Ind Eng Chem Res 47:5362–5368

    Article  CAS  Google Scholar 

  35. Sun LM, Chen JX, Wang RJ (2009) Catal Lett 133(3–4):346–353

    Google Scholar 

  36. Dry ME, Shingles T, Boshoff LJ, Oosthuizen GJ (1969) J Catal 15:190–199

    Article  CAS  Google Scholar 

  37. Panagiotopoulou P, Kondarides DI (2008) J Catal 260:141–149

    Article  CAS  Google Scholar 

  38. Chen JX, Zhou SJ, Ci DH, Zhang JX, Wang RJ (2009) Ind Eng Chem Res 48:3812–3819

    Article  CAS  Google Scholar 

  39. Aika K, Kumasaka M, Oma T, Kato O, Matsuda H, Watanabe N, Yamazaki K (1986) Appl Catal 28:57–68

    Article  CAS  Google Scholar 

  40. Oyama ST, Wang X, Lee YK, Bando K, Requejo FG (2002) J Catal 210:207–217

    Article  CAS  Google Scholar 

  41. Rodrigues VDO, Guillaume JE, Arnaldo CF (2010) J Phy Chem C 114:4557–4567

    Article  CAS  Google Scholar 

  42. Jing FL, Katryniok B, Richard EB, Sebastien P (2013) Catal Today 203:32–39

    Article  CAS  Google Scholar 

  43. Maia AJ, Oliveira BG, Esteves PM, Louis B, Lam YL, Pereira MM (2011) Appl Catal A 403:58–64

    CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial supports from the National Natural Science Foundation of China (No. 21276190 and 20806059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xitao Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Wang, X. & Lv, R. Interaction between Cs and Ni2P/SiO2 for enhancing isobutane dehydrogenation in the presence of hydrogen. Reac Kinet Mech Cat 113, 393–406 (2014). https://doi.org/10.1007/s11144-014-0738-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-014-0738-7

Keywords

Navigation