Skip to main content
Log in

Kinetic studies on isobutylene cracking to propylene over a HZSM-5 catalyst in a mixed flow reactor

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The kinetics of isobutylene cracking to propylene was studied in a mixed flow reactor with high-velocity spinning rate over a HZSM-5 catalyst. The experiment was carried out at temperatures from 500 to 575 °C, in the absence of the influences of external and internal mass transfer. According to the kinetic model established, the kinetic parameters for each step were calculated. The estimated intrinsic activation energies for the forward and reverse reactions were 157.8 and 184.3 kJ/mol, respectively. The adsorption enthalpy of isobutylene was also calculated, with a value of −106.1 kJ/mol. The heats of cracking reactions for octylcation and pentylcation are 107.2 and 137.2 kJ/mol, respectively. The validity of the kinetic model was verified by the good agreement on the yield of propylene between experimental results and model predictions. According to the analysis of the rate of propylene formation, an optimal temperature and a proper conversion must be selected to maximize the yield of propylene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fogash KB, Hong Z, Dumesic JA (1998) J Catal 173:519–529

    Article  CAS  Google Scholar 

  2. Tang ZC, Zhang P, Han WL, Lu GX, Lu JY (2013) Reac Kinet Mech Cat 108:231–239

    Article  CAS  Google Scholar 

  3. Yang XC, Shang YC, Yang PP (2010) Reac Kinet Mech Cat 100:399–405

    CAS  Google Scholar 

  4. Yaluris G, Rekoske JE, Aparicio LM, Madon RJ, Dumesic JA (1995) J Catal 153:54–64

    Article  CAS  Google Scholar 

  5. Yaluris G, Rekoske JE, Aparicio LM, Madon RJ, Dumesic JA (1995) J Catal 153:65–75

    Article  CAS  Google Scholar 

  6. Sanchez-Castillo M, Agarwal N, Miller C, Cortright RD, Madon RJ, Dumesic JA (2002) J Catal 205:67–85

    Article  CAS  Google Scholar 

  7. Sanchez-Castillo M, Agarwal N, Bartsch A, Cortright RD, Madon RJ, Dumesic JA (2003) J Catal 218:88–103

    Article  CAS  Google Scholar 

  8. Roohollahi G, Kazemeini M (2011) AIChE J 58:2456–2465

    Article  Google Scholar 

  9. Mier D, Aguayo AT, Gamero M, Gayubo Ana G, Bilbao J (2010) Ind Eng Chem Res 49:8415–8423

    Article  CAS  Google Scholar 

  10. Zhou HQ, Wang Y, Wei F, Wang DZ, Wang ZW (2008) Appl Catal A 348:135–141

    Article  CAS  Google Scholar 

  11. Meng XH, Xu CM, Li L, Gao JS (2010) Energy Fuel 24:6233–6238

    Article  CAS  Google Scholar 

  12. Li CY, Yang CH, Shan HH (2007) Ind Eng Chem Res 46:4914–4920

    Article  CAS  Google Scholar 

  13. Li CY, Liu YB, Yang CH, Chen WM, Liu WJ, Gong HF (2010) A method to realize mixed flow of gas or gas-solid fluid and the reactor. China Patent CN101829534A, 15 Sept 2010

  14. Liu WJ, Zhao H, Li CY, Yang CH, Shan HH (2011) Chem Eng (China) 39:84–88

    Article  Google Scholar 

  15. Haag WO, Lago RM, Weisz PB (1981) Faraday Disc Chem Soc 72:317–330

    Article  Google Scholar 

  16. Krannils H, Haag WO, Gates BC (1992) J Catal 135:115–124

    Article  Google Scholar 

  17. Levenspiel O (1999) Chemical reaction engineering, 3rd edn. Wiley, NewYork

    Google Scholar 

  18. Haag WO, Dessau RM (1984) Proceedings of the 8th international congress on catalysis, Berlin, Germany, July 2–6 1984. Verlag Chemie, Weinheim, pp 305–316

    Google Scholar 

  19. Fogash KB, Hong Z, Kobe JM, Dumesic JA (1998) Appl Catal A 172:107–116

    Article  CAS  Google Scholar 

  20. Villegas JI, Kangas M, Byggningsbacka R, Kumar N, Salmi T, Yu DM (2008) Catal Today 133–135:762–769

    Article  Google Scholar 

  21. Čejka J, Wichterlová B, Sarv P (1999) Appl Catal A 179:217–222

    Article  Google Scholar 

  22. Byggningsbacka R, Kumar N, Lindfors LE (1999) Ind Eng Chem Res 38:2896–2901

    Article  CAS  Google Scholar 

  23. Rutenbeck D, Papp H, Ernst H, Schwieger W (2001) Appl Catal A 206:57–66

    Article  CAS  Google Scholar 

  24. Bedia J, Ruiz-Rosas R, Rodríguez-Mirasol J, Cordero T (2010) J Catal 271:33–42

    Article  CAS  Google Scholar 

  25. Rioux RM, Vannice MA (2003) J Catal 216:362–376

    Article  CAS  Google Scholar 

  26. Roine A (2002) HSC-Software, version 5.1, Outokumpu Research Oy, Pori, Finland

  27. Guo YH, Pu M, Wu JY, Zhang JY, Chen BH (2007) Appl Surf Sci 254:604–609

    Article  CAS  Google Scholar 

  28. Borges P, Ramos Pinto R, Lemos MANDA, Lemos F, Védrine JC, Derouane EG et al (2007) Appl Catal A 324:20–29

    Article  CAS  Google Scholar 

  29. Oliveira P, Borges P, Ramos Pinto R, Lemos MANDA, Lemos F, Védrine JC et al (2010) Appl Catal A 384:177–185

    Article  CAS  Google Scholar 

  30. Buchanan JS, Santiesteban JG, Haag WO (1996) J Catal 158:279–287

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support was provided by the Major State Basic Research Development Program of China (973 Program), 2012CB215006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunyi Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, L., Meng, X. & Li, C. Kinetic studies on isobutylene cracking to propylene over a HZSM-5 catalyst in a mixed flow reactor. Reac Kinet Mech Cat 111, 305–318 (2014). https://doi.org/10.1007/s11144-013-0630-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-013-0630-x

Keywords

Navigation