Skip to main content
Log in

Transition metal modified activated carbons from biomass and coal treatment products as catalysts for methanol decomposition

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Copper, iron and cobalt supported on activated carbon materials are compared as catalysts in methanol decomposition in view of their potential application as intelligent carriers of hydrogen. The activated carbon supports were obtained from renewable agriculture waste (peach shell) or coal treatment by-products (coal tar pitch). The parent activated carbons and their transition metal modifications were characterized by nitrogen physisorption, XRD, UV–Vis, FTIR, Mössbauer spectroscopy and TPR in hydrogen, and the surface functional groups were determined by the Böhm method. It was assumed that the formation of transition metal modified activated carbon catalysts is a complex process which proceeds during the preparation procedure with the activity of the support and also during the catalysis by the influence of the reaction medium. The decisive effect of carbon basal planes over the texture and surface functionality of the support on the formation of transition metals active phase was assumed. Among the studied materials, cobalt modifications exhibited excellent catalytic activity and selectivity in methanol decomposition to H2 and CO despite the nature of the activated carbons used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1

Similar content being viewed by others

References

  1. Do MH, Phan NH, Nguyen TD, Pham TTS, Nguyen VK, Vu TT, Nguyen TK (2011) Chemosphere 85:1269–1276

    Article  CAS  Google Scholar 

  2. Gao X, Liu S, Zhang Y, Luo Z, Cen K (2011) J Hazard Mater 188:58–66

    Article  CAS  Google Scholar 

  3. Chuang KH, Lu CY, Wey MY, Huang YN (2011) Appl Catal A 397:234–243

    Article  CAS  Google Scholar 

  4. Haro M, Ruiz B, Andrade M, Mestre AS, Parra JB, Carvalho AP, Ania CO (2012) Microporous Mesoporous Mater 154:68–73

    Article  CAS  Google Scholar 

  5. Yang R, Liu G, Li M, Zhang J, Hao X (2012) Microporous Mesoporous Mater 158:108–116

    Article  CAS  Google Scholar 

  6. Karagoz S, Tay T, Ucar S, Erdem M (2008) Bioresour Technol 99:6214–6222

    Article  Google Scholar 

  7. Klasson KT, Ledbetter CA, Wartelle LH, Lingle SE (2010) Ind Crops Prod 31:261–265

    Article  Google Scholar 

  8. Chan OS, Cheung WH, McKay G (2011) Carbon 49:4674–4687

    Article  CAS  Google Scholar 

  9. Yonghou X, Shudong W, Diyong W, Quan Y (2008) Sep Purif Technol 59:326–330

    Article  Google Scholar 

  10. Ania CO, Bandosz TJ (2006) Carbon 44:2404–2412

    Article  CAS  Google Scholar 

  11. Choi J-S, Kim T-H, Choo K-Y, Sung J-S, Saidutta MB, Ryu S-O, Song S-D, Ramachandra B, Rhee Y-W (2005) Appl Catal A 290:1–8

    Article  CAS  Google Scholar 

  12. Hagen S, Barfod R, Fehrmann R, Jacobsen CJH, Teunissen HT, Chorkendorff I (2003) J Catal 214:327–335

    Article  CAS  Google Scholar 

  13. Zhu ZH, Radovic LR, Lu GQ (2000) Carbon 38:451–464

    Article  CAS  Google Scholar 

  14. Duranoglu D, Beker Ue (2012) Energy Sources Part A 34:1004–1015

    Article  CAS  Google Scholar 

  15. Boehm HP (1966) Adv Catal Relat Subj 16:179–188

    Article  CAS  Google Scholar 

  16. Papier E, Li S, Donnet JB (1987) Carbon 25:243–247

    Article  Google Scholar 

  17. Kennedy LJ, Vijaya JJ, Sekaran G (2004) Ind Eng Chem Res 43:1832–1848

    Article  CAS  Google Scholar 

  18. Chmielarz L, Kustrowski P, Dziembaj R, Cool P, Vansant EF (2010) Microporous Mesoporous Mater 127:133–141

    Article  CAS  Google Scholar 

  19. Soares Maia DA, Alexandre de Oliveira JC, Toso JP, Sapag K, López RH, Azevedo DCS, Cavalcante CL Jr, Zgrablich G (2011) Adsorption 17:853–861

    Article  CAS  Google Scholar 

  20. Reinoso FR (1998) Carbon 36:159–175

    Article  Google Scholar 

  21. Xiong H, Moyob M, Motchelaho MAM, Jewell LL, Coville NJ (2010) Appl Catal A 388:168–178

    Article  CAS  Google Scholar 

  22. Seredych M, Bandosz TJ (2010) Fuel Process Technol 91:693–701

    Article  CAS  Google Scholar 

  23. Depci T (2012) Chem Eng J 181–182:467–478

    Article  Google Scholar 

  24. Zhang C-H, Wan H-J, Yang Y, Xiang H-W, Li Y-W (2006) Catal Commun 7:733–738

    Article  CAS  Google Scholar 

  25. Turkdogan ET, Vinters JV (1974) Metall Trans 5:11–19

    CAS  Google Scholar 

  26. Xu D, Dai P, Guo Q, Yue Xi (2008) Int J Hydrogen Energy 33:7371–7377

    Article  CAS  Google Scholar 

  27. Du Y, Meng Q, Wang J, Yan J, Fan H, Liu Y, Dai H (2012) Microporous Mesoporous Mater 162:199–206

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support BAS and Bulgarian National Science Fund at the Ministry of Education, Youth and Science under Project DFNI-E01/7/2012 are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanya Tsoncheva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsoncheva, T., Genova, I., Tsintsarski, B. et al. Transition metal modified activated carbons from biomass and coal treatment products as catalysts for methanol decomposition. Reac Kinet Mech Cat 110, 281–294 (2013). https://doi.org/10.1007/s11144-013-0612-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-013-0612-z

Keywords

Navigation