Skip to main content
Log in

Kinetic study of selective propane oxidation to acrylic acid over Mo1V0.3Te0.23Nb0.12Ox using the genetic algorithm

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The kinetics of selective propane oxidation to acrylic acid over Mo1V0.3Te0.23Nb0.12Ox was investigated using the experimental data of a micro catalytic fixed bed reactor. Experimental data were obtained under different operating conditions (T = 380–490 °C, GHSV = 50, 33.3 ml (min gcat)−1, (O2)/(C3H8) = 1, 2, 3 and (steam)/(C3H8) = 5, 7.5). Power law, Eley–Rideal and Mars–Van Krevelen models for the prediction the catalytic performance were employed using the genetic algorithm. The reaction orders obtained by the power law model determined that the propane oxidation is dependent on the gas phase oxygen concentration. The Eley–Rideal model, in which surface oxygen is in equilibrium with the gas phase, could not predict this dependency on oxygen concentration. So, it was proposed that selective oxidation of propane over this catalyst follows the Mars–Van Krevelen mechanism. Kinetic analysis allowed determination the critical role of water in the catalyst-reaction system. The absence of water in the reaction feed induces some structural defects which decreases propane activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AA:

Acrylic acid

a, b, c, d, e, f, m:

Kinetic parameters fitting by genetic algorithm

[A]:

Concentration of A (mol m−3)

E:

Activation energy, kinetic parameters for model fitting by genetic algorithm (J mol−1)

ΔHads :

Adsorption energy, kinetic parameters for model fitting by genetic algorithm (J mol−1)

k01, k1 :

Frequency factor and rate constant respectively, for power law model [mol(1−(a+b+m)) (m3)(a+b+m) g −1 cat min−1] when (steam effect) is [H2O]m

k01, k1 :

Frequency factor and rate constant respectively for MVK and ER models (mol g −1 cat min−1 Pa−(a+1))

k02, k2 :

Frequency factor and rate constant respectively for power law model [mol(1−(c+d)) (m3)(c+d) gr −1 cat min−1]

k03, k3 :

Frequency factor and rate constant respectively for power law model [mol(1−(e+f)) (m3)(e+f) g −1 cat min−1]

k02, k2, k03, k3, k04, k4 :

Frequency factor and rate constant respectively for MVK and ER models (mol g −1 cat min−1 Pa−1)

Kads, K0,ads :

Adsorption constant (Pa−1)

P:

Pressure (Pa)

P value:

Value statistical parameters

R:

Universal constant of gases (J mol−1 K−1)

r :

Rate of reaction (mol g −1 cat min−1)

s:

Adsorbed piece on catalyst surface

T:

Temperature (K)

w:

Weight of catalyst (g)

Y:

Conversion and selectivity of components (%)

τ:

Total volumetric flow rate (mmin−1)

θo :

Fractional coverage of lattice oxygen

β:

Degree of surface catalyst reduction

References

  1. Cavani F, Trifiro F (1999) Catal Today 51:561

    Article  CAS  Google Scholar 

  2. Silberov B, Fathi M, Holmen A (2004) Appl Catal A 276:17

    Article  Google Scholar 

  3. Wu J, Yang H, Fan Y, Xu B, Chen Y (2007) J Fuel Chem Technol 35(6):684

    Article  Google Scholar 

  4. Jiang HS, Mao X, Xie SJ, Zhong BK (2002) J Mol Catal A 185:143

    Article  CAS  Google Scholar 

  5. Jentoft FC, Kröhnert J, Melsheimer J, Ressler T, Timpe O, Wienold J, Schlögl R (2003) Appl Catal A 256:291

    Article  CAS  Google Scholar 

  6. Landi G, Lisi L, Volta JC (2004) J Mol Catal A 222:175

    Article  CAS  Google Scholar 

  7. Deniau B, Millet JMM, Loridant S, Christin N, Dubois JL (2008) J Catal 260:30

    Article  CAS  Google Scholar 

  8. Ivars F, Solsona B, Castellon ER, Nieto JML (2009) J Catal 262:35

    Article  CAS  Google Scholar 

  9. Ushikubo T, Nakamura H, Koyasu Y, Wajiki S (1994) EP 0 608 838 A2

  10. Lin MM (2003) Appl Catal A 250:287

    Article  CAS  Google Scholar 

  11. Concepcion P, Hernandez S, Lopez Nieto JM (2011) Appl Catal A 391:92

    Article  CAS  Google Scholar 

  12. Oh KS, Woo SI (2008) Catal Today 137:61

    Article  CAS  Google Scholar 

  13. Zhu B, Li H, Yang W, Lin L (2004) Catal Today 93–95:229

    Article  Google Scholar 

  14. Lintz HG, Muller SP (2009) Appl Catal A 357:178

    Article  CAS  Google Scholar 

  15. Grasselli RK (1999) Catal Today 49:141

    Article  CAS  Google Scholar 

  16. Novakova EK, V′edrine JC, Derouane EG (2002) J Catal 211(1):226

    CAS  Google Scholar 

  17. Widi RK, Bee Abd Hamid S, Schlogl R (2009) Reac Kinet Mech Cat Lett 98:273

    Article  CAS  Google Scholar 

  18. Stern D, Grasselli RK (1997) J Catal 167:560

    Article  CAS  Google Scholar 

  19. Balcells E, Borgmeier F, Grißtede I, Lintz HG, Rosowski F (2004) Appl Catal A 266:211

    Article  CAS  Google Scholar 

  20. Ueda W, Vitry D, Katou T (2005) Catal Today 99:43

    Article  CAS  Google Scholar 

  21. Vitry D, Morikawa Y, Dubois JL, Ueda W (2003) Top Catal 23:47

    Article  CAS  Google Scholar 

  22. Creaser DC, Andersson B, Hudgins RR, Silveston PL (2000) Can J Chem Eng 78:182

    Article  CAS  Google Scholar 

  23. Creaser D, Andersson B (1996) Appl Catal A 141:131

    Article  CAS  Google Scholar 

  24. Ai M (1986) J Catal 101:389

    Article  CAS  Google Scholar 

  25. Lin M, Desai TB, Kaiser FW, Klugherz PD (2000) Catal Today 61:223

    Article  CAS  Google Scholar 

  26. Luo L, Labinger JA, Davis ME (2001) J Catal 200(2):222

    Article  CAS  Google Scholar 

  27. Rahimpour MR, Elekaei Behjati H (2009) Fuel Process Technol 90(2):792

    Article  Google Scholar 

  28. Keyvanloo K, Sedighi M, Towfighi J (2012) Chem Eng J 209:255

    Article  CAS  Google Scholar 

  29. Omata K, Kobayashia S, Horiguchi J, Kobayashi Y, Yamazaki Y, Yamada M (2012) Appl Catal A 425–426:170

    Google Scholar 

  30. Volta JC (1996) Catal Today 32:29

    Article  CAS  Google Scholar 

  31. Fushimi R, Shekhtman SO, Gaffney A, Han S, Yablonsky GS, Gleaves JT (2005) Ind Eng Chem Res 44:6310

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Mehdi Alavi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 60 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazloom, G., Alavi, S.M. Kinetic study of selective propane oxidation to acrylic acid over Mo1V0.3Te0.23Nb0.12Ox using the genetic algorithm. Reac Kinet Mech Cat 110, 387–403 (2013). https://doi.org/10.1007/s11144-013-0607-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-013-0607-9

Keywords

Navigation