Skip to main content
Log in

Iron-pillared clays as catalysts for dye removal by the heterogeneous photo-Fenton technique

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The catalytic activity of iron pillared montmorillonitic clays in the discoloration of methylene blue aqueous solutions by the heterogeneous photo-Fenton process was studied. Catalysts were prepared using two different-sized aggregate fractions of the clay, ranging below 250 μm and within the range of 250–450 μm. Two calcination temperatures, 400 and 600 °C, were used. The solids were characterized by thermo-gravimetric analysis, nitrogen adsorption isotherms, elemental analysis, X-ray diffraction and iron content. A higher specific surface area and specific pore volume were found for the solid obtained from the finer aggregates of the clay and the lowest calcination temperature. Under photo-Fenton like conditions, this catalyst also displayed the highest catalytic activity which remained practically the same at pHs 3.0 and 5.6 and for H2O2 concentrations in the range from 5 to 20 mM. The observed differences in catalytic performance can be explained on the basis of the catalysts’ iron content and textural properties. Leaching of iron ions from the catalysts could not be detected. Long term stability for dye waste water treatment could thus be expected for these catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Malik PK, Saha SK (2003) Sep Purif Technol 31:241–250

    Article  CAS  Google Scholar 

  2. Legrini O, Oliveros E, Braun AM (1993) Chem Rev 93:671–698

    Article  CAS  Google Scholar 

  3. Pignatello JJ, Liu D, Huston P (1999) Environ Sci Technol 33:1832–1839

    Article  CAS  Google Scholar 

  4. Pérez M, Torrades F, García-Hortal JA, Doménech X, Peral J (2002) Appl Catal B 36:63–74

    Article  Google Scholar 

  5. De la Cruz N, Giménez J, Esplugas S, Grandjean D, de Alencastro LF, Pulgarín C (2012) Water Res 46:1947–1957

    Article  Google Scholar 

  6. Trovó AG, Pupo Nogueira RF, Agüera A, Fernandez-Alba AR, Malato S (2012) Water Res 46:5374–5380

    Article  Google Scholar 

  7. Noorjahan M, Durga Kumari V, Subrahmanyam M, Panda L (2005) Appl Catal B 57:291–298

    Article  CAS  Google Scholar 

  8. Zhang J, Hu F, Liu Q, Zhao X, Liu S (2011) Reac Kinet Mech Cat 103:299–310

    Article  CAS  Google Scholar 

  9. Gonzalez-Olmos R, Martin M, Georgi A, Kopinke F, Oller I, Malato S (2012) Appl Catal B 125:51–58

    Article  CAS  Google Scholar 

  10. Rodríguez A, Ovejero G, Sotelo JL, Mestanza M, García J (2010) Ind Eng Chem Res 49:498–505

    Article  Google Scholar 

  11. Liu T, You H (2013) Reac Kinet Mech Cat. doi:10.1007/s11144-012-0534-1

    Google Scholar 

  12. Martínez F, Calleja G, Melero JA, Molina R (2005) Appl Catal B 60:181–190

    Article  Google Scholar 

  13. Timofeeva MN, Khankhasaeva STs, Badmaeva SV, Chuvilin AL, Burgina EB, Ayupov AB, Panchenko VN, Kulikova AV (2005) Appl Catal B 59:243–248

    Article  CAS  Google Scholar 

  14. Cheng M, Song W, Ma W, Chen C, Zhao J, Lin J, Zhu H (2008) Appl Catal B 77:355–363

    Article  CAS  Google Scholar 

  15. Feng J, Hu X, Yue PL, Shizhang Q (2009) Sep Purif Technol 67:213–217

    Article  CAS  Google Scholar 

  16. Herney-Ramirez J, Vicente MA, Madeira LM (2010) Appl Catal B 98:10–26

    Article  CAS  Google Scholar 

  17. Deng C, Ren C, Wu F, Deng N, Glebov E, Pozdnyakov I, Plyusnin V (2010) Reac Kinet Mech Cat 100:277–288

    CAS  Google Scholar 

  18. Catrinescu C, Arsene D, Apopei P, Teodosiu C (2012) Appl Clay Sci 58:96–101

    Article  CAS  Google Scholar 

  19. Ayodele OB, Lim JK, Hameed BH (2012) Appl Catal A 413–414:301–309

    Google Scholar 

  20. Brindley GW, Sempels RE (1977) Clay Miner 12:229–237

    Article  CAS  Google Scholar 

  21. Lahav N, Shani U, Shabtai J (1978) Clays Clay Miner 26:107–115

    Article  CAS  Google Scholar 

  22. Pinnavaia TJ (1983) Science 220:365–371

    Article  CAS  Google Scholar 

  23. Feng J, Hu X, Yue PL (2006) Water Res 40:641–646

    Article  CAS  Google Scholar 

  24. Iurascu B, Siminiceanu I, Vione D, Vicente MA, Gil A (2009) Water Res 43:1313–1322

    Article  CAS  Google Scholar 

  25. De León MA, Castiglioni J, Bussi J, Sergio M (2008) Catal Today 133–135:600–605

    Article  Google Scholar 

  26. Chen J, Zhu L (2007) Catal Today 126:463–470

    Article  CAS  Google Scholar 

  27. Diano W, Rubino R, Sergio M (1994) Microporous Mesoporous Mater 2:179–184

    Article  CAS  Google Scholar 

  28. Yamanaka S, Doi T, Sako S, Hattori M (1984) Mater Res Bull 19:161–168

    Article  CAS  Google Scholar 

  29. Gregg SJ, Sing KSW (1991) Adsorption, surface area and porosity, 2nd edn. Academic Press Inc., London

    Google Scholar 

  30. Barrett EP, Joyner LG, Halenda PH (1951) J Am Chem Soc 73:373–380

    Article  Google Scholar 

  31. Philips TLD 18W/08 information brochure, RS Component International. http://docs-asia.electrocomponents.com/webdocs/002b/0900766b8002b358.pdf. Accessed 10 May 2013

  32. Parida KM, Mishra T, Das D, Chintalpudi SN (1999) Appl Clay Sci 15:463–475

    Article  CAS  Google Scholar 

  33. Zhang S, Liang S, Wang X, Long J, Li Z, Wu L (2011) Catal Today 175:362–369

    Article  CAS  Google Scholar 

  34. Rouquerol F, Rouquerol J, Sing K (1999) Adsorption by powders and porous solids. Principles, methodology and applications, 1st edn. Academic Press, London

    Google Scholar 

  35. Hang PT, Brindley GW (1970) Clays Clay Miner 18:203–212

    Article  Google Scholar 

  36. Martín-Luengo MA, Martins-Carvalho H, Grange P, Ladriere J (1989) Clay Miner 24:495–504

    Article  Google Scholar 

  37. Devi LG, Munikrishnappa C, Nagaraj B, Rajashekhar KE (2013) J Mol Catal A Chem 374–375:125–131

    Article  Google Scholar 

  38. Pignatello JJ (1992) Environ Sci Technol 26:944–951

    Article  CAS  Google Scholar 

  39. Li Y, Lu Y, Zhu X (2006) J Hazard Mater 132:196–201

    Article  CAS  Google Scholar 

  40. Chen Q, Wu P, Li Y, Zhu N, Dang Z (2009) J Hazard Mater 168:901–908

    Article  CAS  Google Scholar 

  41. Noya C, De León A, Sergio M, Bussi J (2011) Avances en Ciencias e Ingeniería 2:35–45

    CAS  Google Scholar 

  42. Najjar W, Chirchi L, Santos E, Ghorhel A (2001) J Environ Monit 3:697–701

    Article  CAS  Google Scholar 

  43. Feng J, Hu X, Yue PL, Zhu HY, Lu GQ (2003) Ind Eng Chem Res 42:2058–2066

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by Comisión Sectorial de Investigación Científica (CSIC), Universidad de la República, Uruguay. The authors thank to Departamento Estrella Campos, Facultad de Química, Universidad de la República for performing atomic absorption spectroscopy for iron content determination and ultimate analysis for carbon determination.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Andrea De León.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De León, M.A., Sergio, M. & Bussi, J. Iron-pillared clays as catalysts for dye removal by the heterogeneous photo-Fenton technique. Reac Kinet Mech Cat 110, 101–117 (2013). https://doi.org/10.1007/s11144-013-0593-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-013-0593-y

Keywords

Navigation