Skip to main content
Log in

Effect of calcination temperature during the synthesis of Co/Al2O3 catalyst used for the hydrogenation of CO2

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Alumina supported and unsupported cobalt catalysts were synthesized, characterized and studied for the CO2 hydrogenation reaction under in situ conditions with simultaneous reactivity measurements to determine the effect of calcination temperature during catalyst preparation. In situ reduction of calcined alumina supported cobalt and unsupported cobalt oxide catalysts revealed that the reduction of the unsupported Co3O4 sample occurred more rapidly and proceeded by the intermediate formation of CoO. The reduction of the calcined alumina supported cobalt catalyst was more difficult and depended on the pre-calcination temperature. The formation of CoO was not observed. In situ reduction of the dried alumina supported cobalt catalysts at 823 K revealed the presence of Co2+ tetrahedral species by UV–Vis–NIR spectroscopy. In situ DRIFTS with simultaneous reactivity measurements of the CO2 hydrogenation reaction revealed that the most suitable calcination temperature for alumina supported cobalt catalysts was 473 K, followed by reduction in H2 at 823 K. Higher calcination temperatures gave rise to stronger cobalt oxide alumina interactions and a loss of activity. Lower calcination temperatures gave rise to a difficult to reduce Co2+ tetrahedral species. Thus, the calcination temperature plays an important role in the synthesis of active alumina supported cobalt catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Backman LB, Rautiainen A, Lindblad M, Jylha O, Krause AOI (2001) Appl Catal A: Gen 208:223

    Article  CAS  Google Scholar 

  2. Ho S, Houalla M, Hercules DM (1990) J Phys Chem 94:6396

    Article  CAS  Google Scholar 

  3. Das T, Deo G (2011) J.Mol Catal A: Gen 350:75

    Article  CAS  Google Scholar 

  4. Wang HY, Ruckenstein E (2001) Appl Catal A: Gen 209:207

    Article  CAS  Google Scholar 

  5. Tannenbaum R, Bor G (2004) J Mol Catal A: Gen 215:33

    Article  CAS  Google Scholar 

  6. Shen G, Ichikawa M (1997) J Chem Soc Faraday Trans 93:1185

    Article  CAS  Google Scholar 

  7. Backman LB, Rautiainen A, Lindblad M, Krause AOI (2009) Appl Catal A: Gen 360:183

    Article  CAS  Google Scholar 

  8. Backman LB, Rautiainen A, Krause AOI, Lindblad M (1998) Catal Today 43:11

    Article  CAS  Google Scholar 

  9. Brik Y, Kacimi M, Ziyad M, Bozon-Verduraz F (2001) J Catal 202:118

    Article  CAS  Google Scholar 

  10. Batista MS, Santos RKS, Assaf EM, Assaf JM, Ticianelli EA (2003) J Power Sour 124:99

    Article  CAS  Google Scholar 

  11. Xiao T, Ji S, Wang H, Coleman KS, Green MLH (2001) J Mol Catal A: Gen 175:111

    Article  CAS  Google Scholar 

  12. Das T, Deo G (2012) Catal Today 198:116

    Article  CAS  Google Scholar 

  13. Ji Y, Zhao Z, Duan A, Jiang G, Liu J (2009) J Phys Chem C 113:7186

    Article  CAS  Google Scholar 

  14. Gazzoli D, Occhiuzzi M, Cimino A, Cordischi D, Minelli G, Pinzari F (1996) J Chem Soc Faraday Trans 92:4567

    Article  CAS  Google Scholar 

  15. Niemela MK, Backman L, Krause AOI, Vaara T (1997) Appl Catal A: Gen 156:319

    Article  Google Scholar 

  16. Puskas I, Fleisch TH, Full PR, Kaduk JA, Marshall CL, Meyers BL (2006) Appl Catal A: Gen 311:146

    Article  CAS  Google Scholar 

  17. Ernst B, Libs S, Chaumette PO, Kiennemann AO (1999) Appl Catal A: Gen 186:145

    Article  CAS  Google Scholar 

  18. Zhang Y, Xiong H, Liew K, Li J (2005) J Mol Catal A: Gen 237:172

    Article  CAS  Google Scholar 

  19. Srisawad N, Chaitree W, Mekasuwandumrong O, Shotipruk A, Jongsomjt B, Panpranot J (2012) React Kinet Mech Cat 107:179–188

    Article  CAS  Google Scholar 

  20. Kabouss KE, Kacimi M, Ziyad M, Ammar S, Ensuque A, Piquemal J, Bozon-Verduraz F (2006) J Mater Chem 16:2453

    Article  Google Scholar 

  21. van de Water LGA, Bezemer GL, Bergwerff JA, Versluijs-Helder M, Weckhuysen BM, de Jong KP (2006) J Catal 242:287

    Article  Google Scholar 

  22. Vakros J, Bourikas K, Perlepes S, Kordulis C, Lycourghiotis A (2004) Langmuir 20:10542

    Article  CAS  Google Scholar 

  23. Jongsomjit B, Panpranot J, Goodwin JG (2001) J Catal 204:98

    Article  CAS  Google Scholar 

  24. Tang C, Wang C, Chien S (2008) Thermochim Acta 473:68

    Article  CAS  Google Scholar 

  25. Xiong J, Borg O, Blekkan EA, Holmen A (2008) Catal Commun 9:2327

    Article  CAS  Google Scholar 

  26. Potoczna-Petru D, Krajczyk L (2003) Catal Lett 87:51

    Article  CAS  Google Scholar 

  27. Tsoncheva T, Gallob A, Scotti N, Dimitrov M, Delaigle R, Gaigneaux EM, Kovacheva D, Santo VD, Ravasio N (2012) Appl Catal A: Gen 417–418:209

    Article  Google Scholar 

  28. Enache DI, Rebours B, Roy-Auberger M, Revel R (2002) J Catal 205:346

    Article  CAS  Google Scholar 

  29. Iglesia E (1997) Appl Catal A: Gen 161:59

    Article  CAS  Google Scholar 

  30. Cho JH, Park JH, Chang T-S, Seo G, Shin C-H (2012) Appl Catal A: Gen 417–418:313

    Article  Google Scholar 

  31. Jacobs G, Patterson P, Das TK, Luo M, Davis BH (2004) Appl Catal A: Gen 270:65

    Article  CAS  Google Scholar 

  32. Chu W, Chernavskii P, Gengembre L, Pankina GA, Fongarland P, Khodakov AY (2007) J Catal 252:215

    Article  CAS  Google Scholar 

  33. Park J-Y, Lee Y-J, Karandikar PK, Jun K-W, K-S Ha, Park H-G (2011) Appl Catal A: Gen 411–412:15

    Google Scholar 

  34. Jacobs G, Das TK, Zhang Y, Li JO, Racoillet G, Davis BH (2002) Appl Catal A: Gen 233:263

    Article  CAS  Google Scholar 

  35. den Breejen JP, Sietsma JRA, Friedrich H, Bitter JH, de Jong KP (2010) J Catal 270:146

    Article  Google Scholar 

  36. Wolters M, Munnik P, Bitter JH, de Jongh PE, de Jong KP (2011) J Phys Chem C 115:3332

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goutam Deo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, T., Sengupta, S. & Deo, G. Effect of calcination temperature during the synthesis of Co/Al2O3 catalyst used for the hydrogenation of CO2 . Reac Kinet Mech Cat 110, 147–162 (2013). https://doi.org/10.1007/s11144-013-0592-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-013-0592-z

Keywords

Navigation