Skip to main content
Log in

Formation and dissociation of gas hydrate in terms of chemical kinetics

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Based on the general theory of chemical kinetics, a theoretical model was developed for the formation and dissociation of a gas hydrate. An expression is derived for the driving force of the formation and dissociation. The presented theory was compared with other well-known theoretical models and, from the available experimental data, the temperature dependence was determined for the methane hydrate formation and dissociation rate constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

A :

Affinity, J/mol

c :

Molar concentration of gas close to the interface, mol/m3

E :

Activation energy of the gas hydrate formation reaction at an interface, J/mol

E dis :

Activation energy of the gas hydrate dissociation reaction at the interface, J/mol

f :

Fugacity of the gas, Pa

K :

Kinetic parameter, mol/(m2 Pa s)

k :

Rate constant of the gas hydrate formation reaction at the interface, m3n+1/(moln s)

\( k^{\prime} \) :

Empirical coefficient, 1/(Pa s)

\( K_0 \) :

Pre-exponential factor in the Arrhenius equation, m3n+1/(moln s)

k dis :

Rate constant of the gas hydrate dissociation reaction at the interface, m/s

k dis0 :

Pre-exponential factor in the Arrhenius equation, m/s

n :

Hydration number

n 0 :

Amount of methane, used in the formation of the hydrate, mol

n g :

Amount of the gas, mol

\( n_{\text{H}} \) :

Amount of methane present in the hydrate, mol

\( n_{\text{h}} \) :

Amount of gas hydrate, mol

\( n_{\text{w}} \) :

Amount of water, mol

\( p \) :

Pressure, Pa

\( R \) :

Gas constant, J/(mol K)

\( R_{\text{dis}} \) :

Rate of the gas hydrate dissociation reaction at the interface, mol/(m2 s)

\( R_{\text{form}} \) :

Rate of the gas hydrate formation reaction at the interface, mol/(m2 s)

\( r \) :

Rate of change of moles of the substance at the interface during the gas hydrate formation/dissociation reactions, mol/(m2 s)

\( S \) :

Interfacial area, m2

\( T \) :

Temperature, K

\( t \) :

Time, s

\( Z \) :

Compressibility factor

\( \upalpha \) :

Experimental constant, m2/mol

\( \upmu \) :

Chemical potential, J/mol

\( \upchi \) :

Molar density of gas hydrate, mol/m3

\( \upomega \) :

Molar density of water, mol/m3

\( \text{eq} \) :

Equilibrium between water, gas hydrate and gas

g:

Gas

h:

Gas hydrate

w:

Water

References

  1. Sloan ED (2003) Nature 426:353–363

    Article  CAS  Google Scholar 

  2. Gudmundsson JC, Børrehaug A (1996) In: Proceedings of the 2nd international conference on natural gas hydrates, Toulouse, France, pp 415–422

  3. Gudmundsson JS, Andersson V, Levik OI, Mork M (2000) Ann N Y Acad Sci 912:403–410

    Article  CAS  Google Scholar 

  4. Thomas S, Dawe RA (2003) Energy 28:1461–1477

    Article  CAS  Google Scholar 

  5. Vorotyntsev VM, Malyshev VM (2011) Russ Chem Rev 80:971–991

    Article  CAS  Google Scholar 

  6. Chatti I, Delahaye A, Fournaison L, Petitet J-P (2005) Energy Convers Manage 46:1333–1343

    Article  CAS  Google Scholar 

  7. Davidson DW, Garg SK, Gough SR, Handa YP, Ratclife CI, Ripmeester JA, Tse JS, Lawson WF (1986) Geochim Cosmochim Acta 50:619–623

    Article  CAS  Google Scholar 

  8. Yakushev VS, Istomin VA (1992) Gas hydrate self-preservation effect. In: Maeno N, Hondoh T (eds) Physics and chemistry of ice. Hokkaido University Press, Sapporo, pp 136–140

    Google Scholar 

  9. Stern LA, Circone S, Kirby SH, Durham WB (2001) J Phys Chem B 105:1756–1762

    Article  CAS  Google Scholar 

  10. Takeya S, Ebinuma T, Uchida T, Nagao J, Narita H (2002) J Cryst Growth 237–239:379–382

    Article  Google Scholar 

  11. Komai T, Kang S-P, Yoon J-H, Yamamoto Y, Kawamura T, Ohtake M (2004) J Phys Chem B 108:8062–8068

    Article  CAS  Google Scholar 

  12. Kuhs WF, Genov G, Staykova DK, Hansen T (2004) Phys Chem Chem Phys 6:4917–4920

    Article  CAS  Google Scholar 

  13. Ogienko AG, Kurnosov AV, Manakov AY, Larionov EG, Ancharov AI, Sheromov MA, Nesterov AN (2006) J Phys Chem B 110:2840–2846

    Article  CAS  Google Scholar 

  14. Istomin VA, Yakushev VS (1992) Gas hydrates in natural conditions. Nedra, Moscow (in Russian)

    Google Scholar 

  15. Melnikov VP, Nesterov AN, Reshetnikov AM, Zavodovsky AG (2009) Chem Eng Sci 64:1160–1166

    Article  CAS  Google Scholar 

  16. Melnikov VP, Nesterov AN, Reshetnikov AM, Istomin VA, Kwon VG (2010) Chem Eng Sci 65:906–914

    Article  CAS  Google Scholar 

  17. Melnikov VP, Nesterov AN, Reshetnikov AM, Istomin VA (2011) Chem Eng Sci 66:73–77

    Article  CAS  Google Scholar 

  18. Ohno H, Oyabu I, Iizuka Y, Hondoh T, Narita H, Nagao J (2011) J Phys Chem A 115:8889–8894

    Article  CAS  Google Scholar 

  19. Vlasov VA, Zavodovsky AG, Madygulov MSh, Reshetnikov AM (2011) Earth Cryosphere 15(4):72–74

    Google Scholar 

  20. Melnikov VP, Nesterov AN, Podenko LS, Reshetnikov AM, Shalamov VV (2012) Chem Eng Sci 71:573–577

    Article  CAS  Google Scholar 

  21. Vysniauskas A, Bishnoi PR (1983) Chem Eng Sci 38:1061–1072

    Article  CAS  Google Scholar 

  22. Vysniauskas A, Bishnoi PR (1985) Chem Eng Sci 40:299–303

    Article  CAS  Google Scholar 

  23. Kim HC, Bishnoi PR, Heidemann RA, Rizvi SSH (1987) Chem Eng Sci 42:1645–1653

    Article  CAS  Google Scholar 

  24. Ullerich JW, Selim MS, Sloan ED (1987) AIChE J 33:747–752

    Article  CAS  Google Scholar 

  25. Englezos P, Kalogerakis N, Dholabhai PD, Bishnoi PR (1987) Chem Eng Sci 42:2647–2658

    Article  CAS  Google Scholar 

  26. Jamaluddin AKM, Kalogerakis N, Bishnoi PR (1989) Can J Chem Eng 67:948–954

    Article  Google Scholar 

  27. Skovborg P, Rasmussen P (1994) Chem Eng Sci 49:1131–1143

    Article  CAS  Google Scholar 

  28. Staykova DK, Kuhs WF, Salamatin AN, Hansen T (2003) J Phys Chem B 107:10299–10311

    Article  CAS  Google Scholar 

  29. Kuhs WF, Staykova DK, Salamatin AN (2006) J Phys Chem B 110:13283–13295

    Article  CAS  Google Scholar 

  30. Ribeiro CP, Lage PLC (2008) Chem Eng Sci 63:2007–2034

    Article  CAS  Google Scholar 

  31. Upadhyay SK (2006) Chemical kinetics and reaction dynamics. Springer, New York; Anamaya Publishers, New Delhi

  32. Englezos P, Kalogerakis NE, Bishnoi PR (1990) J Incl Phenom 8:89–101

    Article  CAS  Google Scholar 

  33. Bishnoi PR, Natarajan V (1996) Fluid Phase Equilib 117:168–177

    Article  Google Scholar 

  34. Kashchiev D, Firoozabadi A (2002) J Cryst Growth 243:476–489

    Article  CAS  Google Scholar 

  35. Kashchiev D, Firoozabadi A (2003) J Cryst Growth 250:499–515

    Article  CAS  Google Scholar 

  36. de Donder T, van Rysselberghe P (1936) Thermodynamic theory of affinity: a book of principles. Stanford University Press, Stanford

    Google Scholar 

  37. Prigogine I, Defay R (1954) Chemical thermodynamics. Longmans–Green & Co., London

  38. Kashchiev D, Firoozabadi A (2002) J Cryst Growth 241:220–230

    Article  CAS  Google Scholar 

  39. Kondepudi D, Prigogine I (1998) Modern thermodynamics: from heat engines to dissipative structures. Wiley, Chichester

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Foundation for Basic Research (project No. 10-05-00270) and the Council on Grants of the President of the Russian Federation (Grant NSh-5582.2012.5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeriy A. Vlasov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vlasov, V.A. Formation and dissociation of gas hydrate in terms of chemical kinetics. Reac Kinet Mech Cat 110, 5–13 (2013). https://doi.org/10.1007/s11144-013-0578-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-013-0578-x

Keywords

Navigation