Skip to main content
Log in

Feasibility and mechanism of p-nitrophenol decomposition in aqueous dispersions of ferrihydrite and H2O2 under irradiation

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

This investigation illustrates the fact that the effective decomposition of p-nitrophenol (p-NP) in H2O2/ferrihydrite (FH) dispersion under irradiation is a homogeneous Fenton-like reaction in a heterogeneous system. The decomposition of p-NP is initiated from the photo-dissolution of FH into aqueous Fe(III) that reacts slowly with H2O2 to generate hydroxyl radical. Hydroquinone, the initial intermediate of p-NP decomposition, auto-accelerates the subsequent decomposition of p-NP due to its acceleration of the photo-reductive dissolution of FH. The effect of key operating parameters such as FH dosage, initial solution pH and H2O2 dosage was also studied on the photo-induced decomposition of p-NP. The results indicate that the combination of FH and H2O2 with a molar ratio of 1:0.225 is highly efficient for the decomposition of p-NP (0.15 mM) at pH 2.5–3.0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhou MH, Lei LH (2006) Chemosphere 63:1032–1040

    Article  CAS  Google Scholar 

  2. Bo LL, Quan X, Chen S (2006) Water Res 40:3061–3068

    Article  CAS  Google Scholar 

  3. Zhu XP, Ni JR (2009) Electrochem Commun 11:274–277

    Article  CAS  Google Scholar 

  4. Fu DM, Peng YR, Liu RH (2009) Chemosphere 75:701–706

    Article  CAS  Google Scholar 

  5. Pradhan AA, Gogate PR (2010) J Hazard Mater 173:517–522

    Article  CAS  Google Scholar 

  6. Ghodrati MS, Haghighi M, Mohamdzadeh JSS, Pourabas B, Pipelzadeh E (2011) Reac Kinet Mech Cat 104:49–60

    Article  CAS  Google Scholar 

  7. Wang YH, Zhao JL, Liang Y (2013) Reac Kinet Mech Cat. doi:10.1007/s11144-012-0537-y

    Google Scholar 

  8. Lin YC, Lin CF, Chou JM (2009) J Hazard Mater 171:452–458

    Article  CAS  Google Scholar 

  9. Wang KP, Guo JS, Yang M (2009) J Hazard Mater 162:1243–1248

    Article  CAS  Google Scholar 

  10. Duguet JP, Anselme C (1990) Ozone Sci Technol 12:281–289

    Article  CAS  Google Scholar 

  11. Fenton H (1894) Chem Soc Trans 65:899–910

    Article  CAS  Google Scholar 

  12. Hoffmann M, Martin S, Choi W (1995) Chem Rev 95:69–96

    Article  CAS  Google Scholar 

  13. Mills A, Hunte SL (1997) Photochem Photobiol A 108:1–35

    Article  CAS  Google Scholar 

  14. Goi A, Trapido M (2002) Chemosphere 46:913–922

    Article  CAS  Google Scholar 

  15. Wang Y, Zhao YC, Ma Y (2010) J Mol Catal A 325:79–82

    Article  CAS  Google Scholar 

  16. Matta R, Hanna K, Chiron S (2008) Sep Purif Technol 61:442–446

    Article  CAS  Google Scholar 

  17. Lin SS, Gurol MD (1998) Environ Sci Technol 32:1417–1423

    Article  CAS  Google Scholar 

  18. Kwan WP, Voelker BM (2002) Environ Sci Technol 36:1467–1476

    Article  CAS  Google Scholar 

  19. Kwan WP, Voelker BM (2003) Environ Sci Technol 37:1150–1158

    Article  CAS  Google Scholar 

  20. Kwan WP, Voelker BM (2004) Environ Sci Technol 38:3425–3431

    Article  CAS  Google Scholar 

  21. Andreozzi R, Caprio V, Marotta R (2002) Water Res 36:2761–2768

    Article  CAS  Google Scholar 

  22. Borggaard OK (1982) J Soil Sci 33:443–446

    Article  CAS  Google Scholar 

  23. Lovley DR, Phillips EJ, Potomac R (1986) Appl Environ Microbiol 52:751–756

    CAS  Google Scholar 

  24. Cornell RM, Schwertmann U (2003) Iron oxides: structure, properties, reactions, occurrences and uses. Willey-VCH, Weinheim

    Google Scholar 

  25. Dold B (2003) Appl Geochem 18:1531–1533

    Article  CAS  Google Scholar 

  26. Jambor JL, Dutrizac JE (1998) Chem Rev 98:2549–2552

    Article  CAS  Google Scholar 

  27. Yang Q, Xi HB, Wen XG, Qian Y (2006) Tech Equip Environ Pollut Control 7:50–55

    CAS  Google Scholar 

  28. Bader H, Sturzenegger V, Hoigne J (1988) Water Res 22:1109–1112

    Article  CAS  Google Scholar 

  29. Fadrus H, Maly J (1975) Analyst 100:549–552

    Article  CAS  Google Scholar 

  30. Andrew B, Devin J, Sapsford MD, Williams PK (2009) J Geochem Explor 100:192–198

    Article  Google Scholar 

  31. Bilyana P, Boyko T, Temenuzhka B, Nartzislav P, Leticia FV, Conchi OA (2011) Chem Eng J 8079:1–7

    Google Scholar 

  32. Hongbo S, Elizabeth CB (2007) Chemosphere 68:1807–1813

    Article  Google Scholar 

  33. Barreiro JC, Capelatoa MD, Martin LN (2007) Water Res 41:55–60

    Article  CAS  Google Scholar 

  34. Huang CP, Chen CP, Huang YF (2009) J Mol Catal A 304:121–126

    Article  CAS  Google Scholar 

  35. Huston PL, Pignatello JJ (1999) Water Res 33:1238–1246

    Article  CAS  Google Scholar 

  36. Butler EC, Davis AP (1993) J Photochem Photobiol A 70:273–276

    Article  CAS  Google Scholar 

  37. Scafani A, Palmisano L, Davi E (1991) J Photochem Photobiol A 56:113–118

    Article  Google Scholar 

  38. Taha ME, Yasser MR, Zeinhom HM (2010) J Hazard Mater 174:352–358

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21077031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjuan Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Y., Chen, R., Liu, H. et al. Feasibility and mechanism of p-nitrophenol decomposition in aqueous dispersions of ferrihydrite and H2O2 under irradiation. Reac Kinet Mech Cat 110, 87–99 (2013). https://doi.org/10.1007/s11144-013-0571-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-013-0571-4

Keywords

Navigation