Skip to main content
Log in

A theoretical investigation of the reaction mechanism for hydrogenated furan formation under Prins reaction conditions in trifluoroacetic acid medium

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The formation mechanism of hydrogenated furans by coupling between terminal alkenes and aldehydes in trifluoroacetic acid medium were investigated by ab initio calculations, the main attention was focused on the study of the rate controlling step. Two possible mechanisms for this reaction involving unsaturated alkoxycarbenium ions or dioxolenium ions as a key intermediate were considered. It was shown that the mechanism of formation of 3-alkylsubstituted hydrogenated furans in trifluoroacetic acid under Prins reaction conditions preferably includes recyclization of 3-(2-hydroxyethyl)-1-trifluoromethyl-2,5-dioxolenium ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Talipov RF, Sagitdinova KF, Vakulin IV, Safarov MG (2000) Syntheses based on 3-chloroacetoxytetrahydrofuran. Russ J Org Chem 36:1198–1200

    CAS  Google Scholar 

  2. Talipov RF, Safarov IM, Talipova GR, Safarov MG (1997) Kinetics of heptene-I interaction with formaldehyde in trifluoroacetic acid. React Kinet Catal Lett 61:63–68

    Article  CAS  Google Scholar 

  3. Talipov RF, Safarov MG (1997) Prins reaction AdE as a set of transformations united by a common name. Bashkir J Chem 4:10–13

    CAS  Google Scholar 

  4. Talipov RF, Muslukhov RR, Safarov IM, Yamantaev FA, Safarov MG (1996) Synthesis of β-substituted tetrahydrofurans by Prins reaction. J Cheminform. doi:10.1002/chin.199604138

    Google Scholar 

  5. Shepelevich IS, Talipov RF (2002) RHF-MNDO calculation of the enthalpy of formation for substituted 1-hydroxy-2-oxa-5-pentyl carbocations. J Struct Chem 43:858–861

    Article  CAS  Google Scholar 

  6. Talipov RF, Starikov AS, Gorina IA, Akmanova NA, Safarov MG (1993) Synthesis of dihydrofurans by Prince reactions in the trifluoroacetic-acid medium. Russ J Org Chem 29:1024–1027

    CAS  Google Scholar 

  7. Talipov RF, Starikov AS, Gorin AV, Safarov MG (1993) 1-Step synthesis of 2,3,5-trialkyl-2,5-dihydrofurans using the Prince reaction. Russ J Org Chem 29:748–750

    CAS  Google Scholar 

  8. Talipov RF, Mustafin MM, Safarov MG (1993) Prince reaction with participation of 4-vinyl-1-cyclohexen. Russ J Org Chem 29:127–129

    CAS  Google Scholar 

  9. Greenwood JR, Capper HR, Allan DR, Johnston GAR (1997) Tautomerism of hydroxy-pyridazines: the N-oxides. THEOCHEM 419:97–111

    Article  CAS  Google Scholar 

  10. Yang X, Mague JT, Li C (2001) Diastereoselective synthesis of polysubstituted tetrahydropyrans and thiacyclohexanes via indium trichloride mediated cyclizations. J Org Chem 66:739–747

    Article  CAS  Google Scholar 

  11. Loh T, Hu Q, Ma L (2001) Formation of tetrahydrofuran from homoallylic alcohol via a tandem sequence: 2-oxonia [3,3]-sigmatropic rearrangement/cyclization catalyzed by In(OTf)3. J Am Chem Soc 123:2450–2451

    Article  CAS  Google Scholar 

  12. Suginome M, Iwanami T, Ito Y (1998) Stereoselective cyclization of highly enantioenriched allylsilanes with aldehydes via acetal formation: new asymmetric access to tetrahydropyrans and piperidines. J Org Chem 63:6096–6097

    Article  CAS  Google Scholar 

  13. Cohen F, MacMillan DWC, Overman LE, Romero A (2001) Stereoselection in the Prins-pinacol synthesis of acyltetrahydrofurans. Org Lett 3:1225–1228

    Article  CAS  Google Scholar 

  14. Hanaki N, Link JT, MacMillan DWC, Overman LE, Trankle WG, Wurster JA (2000) Stereoselection in the Prins-pinacol synthesis of 2,2-disubstituted 4-acyltetrahydrofurans. Enantioselective synthesis of (-)-citreoviral. Org Lett 2:223–226

    Article  CAS  Google Scholar 

  15. Overman LE, Pennington LD (2003) Strategic use of pinacol-terminated Prins cyclizations in target-oriented total synthesis. J Org Chem 68:7143–7157

    Article  CAS  Google Scholar 

  16. Jaber JJ, Mitsui K, Rychnovsky SD (2001) Stereoselectivity and regioselectivity in the segment-coupling Prins cyclization. J Org Chem 66:4679–4686

    Article  CAS  Google Scholar 

  17. Miles RB, Davis CE, Coates RM (2006) Syn- and anti-selective Prins cyclizations of δ, ε-unsaturated ketones to 1,3-halohydrins with Lewis acids. J Org Chem 71:1493–1501

    Article  CAS  Google Scholar 

  18. Jasti R, Rychnovsky SD (2006) Racemization in Prins cyclization reactions. J Am Chem Soc 128:13640–13648

    Article  CAS  Google Scholar 

  19. Larock RC, Hightower TR, Hasvold LA, Peterson KP (1996) Palladium(II)-catalyzed cyclization of olefinic tosylamides. J Org Chem 61:3584–3585

    Article  CAS  Google Scholar 

  20. Huang Q, Larock RC (2003) Synthesis of 4-(1-alkenyl)isoquinolines by palladium (II)- catalyzed cyclization/olefination. J Org Chem 68:980–988

    Article  CAS  Google Scholar 

  21. Roesch KR, Larock RC (2002) Synthesis of isoquinolines and pyridines by the palladium/copper-catalyzed coupling and cyclization of terminal acetylenes and unsaturated imines: the total synthesis of decumbenine. J Org Chem 67:86–94

    Article  CAS  Google Scholar 

  22. Qing F, Gao W, Ying J (2000) Synthesis of 3-trifluoroethylfurans by palladium-catalyzed cyclization-isomerization of (Z)-2-alkynyl-3-trifluoromethyl allylic alcohols. J Org Chem 65:2003–2006

    Article  CAS  Google Scholar 

  23. Smith MB, March J (2001) March’s advanced organic chemistry. Reactions, mechanisms, and structure (fifth edition). Wiley, New York

    Google Scholar 

  24. Curtiss LA, Raghavachari K, Redfern PC, Rassolov V, Pople JA (1998) Gaussian-3 (G3) theory for molecules containing first and second-row atoms. J Chem Phys 109:7764–7777

    Article  CAS  Google Scholar 

  25. Curtiss LA, Raghavachari K, Redfern PC, Pople JA (1997) Assessment of Gaussian-2 and density functional methods for the computation of enthalpies of formation. J Chem Phys 106:1063

    Article  CAS  Google Scholar 

  26. DeYonker NJ, Cundari TR, Wilson AK (2006) The correlation consistent composite approach “ccCA”: an alternative to the Gaussian-n methods. J Chem Phys 124:114104

    Article  Google Scholar 

  27. Olivella S, Sole′ A (2000) Ab initio calculations on the 5-exo versus 6-endo cyclization of 1,3-hexadiene-5-yn-1-yl radical: formation of the first aromatic ring in hydrocarbon combustion. J Am Chem Soc 122:11416–11422

    Article  CAS  Google Scholar 

  28. Sullivan MB, Iron MA, Redfern PC, Martin JML, Curtiss LA, Radom L (2003) Heats of formation of alkali metal and alkaline earth metal oxides and hydroxides: surprisingly demanding targets for high-level ab initio procedures. J Phys Chem A 107:5617–5630

    Article  CAS  Google Scholar 

  29. Woodcock HL, Moran D, Pastor RW, MacKerell AD, Brooks BR (2007) Ab initio modeling of glycosyl torsions and anomeric effects in a model carbohydrate: 2-ethoxy tetrahydropyran. Biophys J 93:1–10

    Article  CAS  Google Scholar 

  30. Friesner RA, Murphy RB, Beachy MD, Ringnalda MN, Pollard WT, Dunietz BD, Cao Y (1999) Correlated ab initio electronic structure calculations for large molecules. J Phys Chem A 103:1913–1928

    Article  CAS  Google Scholar 

  31. Gonzalez C, Schlegel HB (1990) Reaction path following in mass-weighted internal coordinates. J Phys Chem 94:5523–5527

    Article  CAS  Google Scholar 

  32. Granovsky AA, http://classic.chem.msu.su/gran/gamess/index.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. R. Syrlybaeva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Syrlybaeva, R.R., Vakulin, I.V. & Talipov, R.F. A theoretical investigation of the reaction mechanism for hydrogenated furan formation under Prins reaction conditions in trifluoroacetic acid medium. Reac Kinet Mech Cat 109, 301–313 (2013). https://doi.org/10.1007/s11144-013-0563-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-013-0563-4

Keywords

Navigation