Skip to main content
Log in

Treatment of organic pollutants in water using TiO2 powders: photocatalysis versus sonocatalysis

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The scope of this work was to explore the application of different TiO2 powders (P25, PC105, PC500 and their calcined forms) for the photocatalytic and sonocatalytic treatment of model wastewaters containing single pollutants and their mixtures; dyes: C.I. Reactive Violet 2 (RV2), C.I. Mordant Yellow 10 (MY10) and oxalic acid. The influence of the applied catalyst type on the photocatalytic and sonocatalytic efficiency was explored with the emphasis on crystalline form and granulometric properties of powders. Generally, TiO2 powders, which were applied as obtained, demonstrated higher photocatalytic activity (~20 % of organic content oxidized in the mixture of dyes and oxalic acid in 30 min) while their calcined forms were shown to be more prominent as sonocatalysts (up to 13 % of organic contents oxidized in 30 min). The XRD analysis of calcined TiO2 powders confirmed the predominant crystal form of rutile. The degradation and mineralization kinetics of dyes RV2, MY10, oxalic acid and their mixtures was studied. In general, experimental results fitted well (R2 > 0.94) to the half and first order reaction rate model, pointing at the two ongoing mechanisms, i.e. reaction with ·OH radicals and direct electron transfer between adsorbed molecules and catalyst surface. A certain deviation is observed for the model solution containing dye MY10. MY10 serve as a filter for the UV-A irradiation (λmax = 365 nm). A detailed kinetic study confirmed the two simultaneous kinetic pathways and the comparable mechanisms for oxalic acid and dyes photocatalysis. The performed study confirmed the similarity of occurring mechanisms in photocatalysis and sonocatalysis due to sonoluminescence, with the extent of acoustic cavitation in ·OH radical generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

\( d \) :

Particle size (expressed with diameter value) (m)

\( d_{i} \) :

Particle size in size class i (m)

\( \overline{{d_{i} }} \) :

Average particle size in size class i (m)

d 3,2 :

Sauter mean diameter (m)

\( d_{\text{p}} \) :

Pore size (expressed with diameter value) (m)

\( d_{{{\text{p, av}} .}} \) :

Average pore size (expressed with diameter value) (m)

\( {\text{d}}Q_{3} \left( {d_{i} } \right) \) :

Experimental data for volume content of entities in size interval \( i \) (−)

\( q_{3} \left( d \right) \) :

Normalized volume probability density function (m−1)

\( V \) :

Volume of adsorbed nitrogen gas that is pore volume (m3)

V P :

Single point total pore volume (m3 g−1)

\( S_{V} \) :

Estimated external surface area (m2 m−3)

\( S_{\text{BET}} \) :

BET surface area (m2 g−1)

\( \psi_{\text{Wa}} \) :

Wadel shape factor (−)

\( i \) :

Discussed size interval (\( i = 1 \cdots 86 \))

r:

Reaction rate, mol dm−3 s−1

k:

Reaction rate constant, mol1−n dm3n−3 s−1

n:

Reaction order

X:

Extent, %

[.]:

Molar concentration, mol dm−3

ea :

Volumetric rate of photon absorption

θ :

Surface coverage

a :

Coefficient for calculation of surface coverage at t = 0

b :

Coefficient for calculation of changes in surface coverage

a k :

Exponential decay coefficient for reaction rate constants (s−1)

λ:

Wavelength, nm

λmax :

Wavelength of maxima absorption

f :

Ultrasonic frequency, kHz

UV-A:

Ultraviolet irradiation with maximum at 365 nm

UV-C:

Ultraviolet irradiation with maximum at 254 nm

References

  1. Arslan Alaton I, Balcioglu IA, Bahnemann DW (2002) Water Res 36:1143–1154

    Article  Google Scholar 

  2. Pekakis PA, Xekoukoulotakis NP, Mantzavinos D (2006) Water Res 40:1276–1286

    Article  CAS  Google Scholar 

  3. Konstantinou IK, Albanis TA (2004) Appl Catal B Environ 49:1–14

    Article  CAS  Google Scholar 

  4. Grčić I, Papić S, Koprivanac N, Kovačić I (2012) Water Res 46:5683–5695

    Article  Google Scholar 

  5. Grčić I (2011) Modelling of the photocatalytic and sonochemical process for the wastewater treatment. Ph.D. dissertation, University of Zagreb

  6. Grčić I, Vujević D, Koprivanac N (2010) Chem Eng J 157:35–44

    Article  Google Scholar 

  7. Beltran FJ (2003) In: Tarr MA (ed) Chemical degradation methods for wastes and pollutants—environmental and industrial applications. Marcel Dekker Inc., New York, pp 1–77

    Google Scholar 

  8. Herrmann J-M (1999) Catal Today 53:115–129

    Article  CAS  Google Scholar 

  9. Mills A, Lee S-K (2004) In: Parsons S (ed) Advanced oxidation processes for water and wastewater treatment. IWA Publishing, Cornwall, pp 137–167

    Google Scholar 

  10. Han F, Kambala VSR, Srinivasan M, Rajarathnam D, Naidu R (2009) Appl Catal A Gen 359:25–40

    Article  CAS  Google Scholar 

  11. Wang J, Jiang Z, Zhang L, Kang P, Xie Y, Lv Y, Xu R, Zhang X (2009) Ultrason Sonochem 16:225–231

    Article  Google Scholar 

  12. Eren Z, Ince NH (2010) J Hazard Mater 177:1019–1024

    Article  CAS  Google Scholar 

  13. Kim JK, Martinez F, Metcalfe IS (2007) Catal Today 124:224–231

    Article  CAS  Google Scholar 

  14. Shimizu N, Ogino C, Dadjour MF (2007) Ultrason Sonochem 14:184–190

    Article  CAS  Google Scholar 

  15. Wang J, Jiang Z, Zhang Z, Zhao G, Zhang G, Ma T, Sun W (2007) Desalination 216:196–208

    Article  CAS  Google Scholar 

  16. Pang YL, Abdullah AZ, Bhatia S (2011) Chem Eng J 166:873–880

    Article  CAS  Google Scholar 

  17. Pang YL, Abdullah AZ (2012) Ultrason Sonochem 19:642–651

    Article  CAS  Google Scholar 

  18. Wang J, Guo B, Zhang X, Zhang Z, Han J, Wu J (2005) Ultrason Sonochem 12:331–337

    Article  CAS  Google Scholar 

  19. Ogi H, Hirao M, Shimoyama M (2002) Ultrasonics 40:649–650

    Article  CAS  Google Scholar 

  20. Bahnemann D, Hilgendorff M, Memming R (1997) J Phys Chem 101:4265–4275

    CAS  Google Scholar 

  21. Krýsa J, Waldner G, Měštánková H, Jirkovsky J, Grabner G (2006) Appl Catal B Environ 64:290–301

    Article  Google Scholar 

  22. Pozzo RL, Brandi RJ, Cassano AE, Baltanás MA (2010) Chem Eng Sci 65:1345–1353

    Article  CAS  Google Scholar 

  23. Wang J, Ma T, Zhang Z, Zhang X, Jiang Y, Zhang G, Zhao G, Zhao H, Zhang P (2007) Ultrason Sonochem 14:246–252

    Article  CAS  Google Scholar 

  24. Grčić I, Koprivanac N, Vujević D, Papić S (2008) J Adv Oxid Technol 11:91–96

    Google Scholar 

  25. Grčić I, Vujević D, Koprivanac N (2010) Chem Biochem Eng Q 24:387–400

    Google Scholar 

  26. Grčić I, Obradović M, Vujević D, Koprivanac N (2010) Chem Eng J 164:196–207

    Article  Google Scholar 

  27. Her N, Park J-S, Yoon Y (2011) Chem Eng J 166:184–190

    Article  CAS  Google Scholar 

  28. McMurray TA, Byrne JA, Dunlop PSM, Winkelman JGM, Eggins BR, McAdams ET (2004) Appl Catal A Gen 262:105–110

    Article  CAS  Google Scholar 

  29. Kosanić MM (1998) J Photochem Photobiol A Chem 119:119–122

    Article  Google Scholar 

  30. Guettai N, Ait Amar H (2005) Desalination 185:439–448

    Article  CAS  Google Scholar 

  31. Kumar J, Bansal A (2012) Int J Environ Sci Technol 9:479–484

    Article  CAS  Google Scholar 

  32. Didenko YT, McNamara WB III, Suslick KS (1999) J Phys Chem A 103:10783–10788

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from the COGITO bilateral project Air and water pollutants abatement on mesoporous silicates modified by oxide particles using advanced oxidation technologies (prof. Vesna Tomašić). The authors would also like to thank prof. Anne Davidson, UPMC, France for complementary analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Grčić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grčić, I., Vujević, D., Žižek, K. et al. Treatment of organic pollutants in water using TiO2 powders: photocatalysis versus sonocatalysis. Reac Kinet Mech Cat 109, 335–354 (2013). https://doi.org/10.1007/s11144-013-0562-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-013-0562-5

Keywords

Navigation