Skip to main content
Log in

Degradation kinetics of phenol by a titanium dioxide photocatalyst coupled with a magnetic field

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Photocatalytic degradation of phenol by a TiO2 catalyst coupled with a magnetic field was investigated from the aspect of reaction kinetics. The effect of the degradation conditions on the phenol degradation rate constants was discussed and optimized. The kinetic investigation showed that the pseudo-first order reaction model could illustrate well the photocatalytic degradation of phenol. With a magnetic field strength of 0.082 T, initial phenol concentration of 60 mg L−1, TiO2 catalyst dosage of 1.0 g L−1, air inflow rate of 1,000 mL min−1, UV lamp power of 100 W and initial pH of 6.6, the highest degradation rate constant of 0.00672 min−1 was achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. He Z, Liu J, Cai W (2005) The important role of the hydroxyl ion in phenol removal using pulsed corona discharge. J Electrostat 63(5):371–386

    Article  CAS  Google Scholar 

  2. Beltran J, Heredia D (2001) Kinetic model for phenolic compound oxidation by Fenton’s reagent. Chemosphere 45:85–89

    Article  Google Scholar 

  3. Rosal R, Rodríguez A, Perdigon-Melon J, Petre A, Garcia-Calvo E (2009) Oxidation of dissolved organic matter in the effluent of a sewage treatment plant using ozone combined with hydrogen peroxide (O3/H2O2). Chem Eng J 149:311–318

    Article  CAS  Google Scholar 

  4. Ucun H, Yildiz E, Nuhoglu A (2010) Phenol biodegradation in a batch jet loop bioreactor (JLB): kinetics study and pH variation. Bioresour Technol 101:2965–2971

    Article  CAS  Google Scholar 

  5. Alnaizy R, Akgerman A (2000) Advanced oxidation of phenolic compounds. Adv Environ Res 4(8):233–244

    Article  Google Scholar 

  6. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C-Photochem Rev 1(1):1–21

    Article  CAS  Google Scholar 

  7. Peng SQ, An R, Wu ZS, Li YX (2012) Enhanced photocatalytic hydrogen evolution under visible light over Cd(x)Zn1 − xS solid solution by ruthenium doping. Reac Kinet Mech Cat 107(1):105–113

    Article  CAS  Google Scholar 

  8. Selcuk MZ, Boroglu MS, Boz I (2012) Hydrogen production by photocatalytic water-splitting using nitrogen and metal co-doped TiO2 powder photocatalyst. Reac Kinet Mech Cat 106(2):313–324

    Article  CAS  Google Scholar 

  9. Chakraborty AK, Kebede MA (2012) Preparation and characterization of WO3/Bi3O4Cl nanocomposite and its photocatalytic behavior under visible light irradiation. Reac Kinet Mech Cat 106(1):83–98

    Article  CAS  Google Scholar 

  10. Fu WN, Wang YH, He C, Zhao JL (2012) Photocatalytic degradation of acephate on ZnFe2O4-TiO2 photocatalyst under visible light irradiation. J Adv Oxid Technol 15(1):177–182

    CAS  Google Scholar 

  11. Song L, Zhang X, Zeng XL (2011) Application of poly(fluorine-co-bithiophene) as a novel sensitizer for TiO2 in the photodegradation of phenol under irradiation of GaN LED clusters. Reac Kinet Mech Cat 102(2):295–302

    Article  CAS  Google Scholar 

  12. Jawad AH, Nawi MA (2012) Fabrication, optimization and application of an immobilized layer-by-layer TiO2/Chitosan system for the removal of phenol and its intermediates under 45-W fluorescent lamp. Reac Kinet Mech Cat 106(1):49–65

    Article  CAS  Google Scholar 

  13. Turro NJ, Chow MF, Chung CJ, Tung CH (1983) Magnetic field and magnetic isotope effects on photoinduced emulsion polymerization. J Am Chem Soc 105(6):1572–1577

    Article  CAS  Google Scholar 

  14. Steiner UE, Ulrich T (1989) Magnetic field effects in chemical kinetics and related phenomena. Chem Rev 89:51–147

    Article  CAS  Google Scholar 

  15. Zhang W, Wang XX, Fu XZ (2003) Magnetic field effect on photocatalytic degradation of benzene over Pt/TiO2. Chem Comm 17:2196–2197

    Article  Google Scholar 

  16. Yang JW, Wang XX, Dai WX, Li DC, Fu XZ (2006) Effect of magnetic field on the photocatalytic oxidation of benzene and ethylene over Pt/TiO2. Acta Phys Chim Sinica 22(1):92–97

    Google Scholar 

  17. Wakasa M, Suda S, Hayashi H, Ishii N, Okano M (2004) Magnetic field effect on the photocatalytic reaction with ultrafine TiO2 Particles. J Phys Chem B 108:11882–11885

    Article  CAS  Google Scholar 

  18. Sara B, Sridhar K, Mariani E, Villa C (2005) Rapid microwave-hydrothermal synthesis of anatase form of titanium dioxide. J Am Ceram Soc 88(11):3238–3240

    Article  Google Scholar 

  19. Li DP, Tong YL, Huang J, Ding LY, Zhong YM, Zeng D, Yan P (2011) First observation of tetranitro iron (II) phthalocyanine catalyzed oxidation of phenolic pollutant assisted with 4-aminoantipyrine using dioxygen as oxidant. J Mol Catal A-Chem 345(1–2):108–116

    Article  CAS  Google Scholar 

  20. Du CP, Yang YM (2005) Photocatalytic properties of Y2O3/TiO2 powders assisted by magnetic field. Ind Catal 13(2):47–50 (in Chinese)

    Google Scholar 

  21. Cheng P, Li W, Zhou T, Jin Y, Gu M (2004) Physical and photocatalytic properties of zinc ferrite doped titania under visible light irradiation. J Photochem Photobiol A-Chem 168:97–101

    Article  CAS  Google Scholar 

  22. Oshea KE, Beightol S, Garcia I, Aguilar M, Kalen DV, Cooper WJ (1997) Photocatalytic decomposition of organic phosphates in irradiated TiO2 suspensions. J Photochem Photobiol A-Chem 107:221–226

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Natural Science Foundation of China (20377034 and 21206133) and Grant for Shaanxi Science and Technology Development (2009K10-07) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Lian Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, YH., Zhao, JL. & Liang, Y. Degradation kinetics of phenol by a titanium dioxide photocatalyst coupled with a magnetic field. Reac Kinet Mech Cat 109, 273–283 (2013). https://doi.org/10.1007/s11144-012-0537-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-012-0537-y

Keywords

Navigation