Skip to main content
Log in

Morphological effect of β zeolite nanocrystallite aggregates as the support of Pt catalyst for the hydroisomerization of n-heptane

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A bifunctional catalyst Pt/Hβ-n (Pt loading: 0.4 wt%) was prepared by the impregnation of an aqueous solution of chloroplatinic acid with β zeolite, wherein the β zeolite support has an unusual morphology of egg-like microspheres assembled by nanocrystallites. Other two control catalysts were also prepared using a β support with micro-sized crystals and a commercial one with varying crystal sizes. The catalysts were characterized by XRD, SEM, ICP, N2 sorption isotherms and mesopore size distribution, and evaluated in the hydroisomerization of n-heptane in an atmospheric fixed bed flow reactor. Though Pt/Hβ-n has similar acidity and Pt loading (0.4 wt%) to the two control catalysts, it exhibits remarkably higher conversion of n-heptane and selectivity to isomerization. According to the characterization data, the higher activity of Pt/Hβ-n is the result of the faster diffusion of reactants in shorter channels of nanocrystallines and the uniformly distributed mesopores within the microspheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dorado F, Romero R, Cañizares P (2002) Appl Catal A 236:235–243

    Article  CAS  Google Scholar 

  2. Blomsma E, Martens JA, Jacobs PA (1996) J Catal 159:323–331

    Article  CAS  Google Scholar 

  3. Chica A, Corma A (1999) J Catal 187:167–176

    Article  CAS  Google Scholar 

  4. Mohammad HP, Touba H (2012) Reac Kinet Mech Catal 106:233–243

    Google Scholar 

  5. Deldari H, Eckelt R (2005) Appl Catal A 293:1–10

    Article  CAS  Google Scholar 

  6. Parlitz B, Schreier E, Zubowa HL, Eckelt R, Lieske E, Lischke G, Fricke R (1995) J Catal 155:1–11

    Article  CAS  Google Scholar 

  7. Zubowa HL, Lischke G, Parlitz B, Schreier E, Eckelt R, Schulz G, Fricke R (1994) Appl Catal A 110:27–38

    Article  CAS  Google Scholar 

  8. Pope TD, Kriz JF, Stanciulescu M, Monnier J (2002) Appl Catal A 233:45–62

    Article  CAS  Google Scholar 

  9. Patrigeon A, Benazzi E, Travers CH, Bernhard JY (2001) Catal Today 65:149–155

    Article  CAS  Google Scholar 

  10. Kuba MG, Prins R, Pirngruber GD (2007) Appl Catal A 333:78–89

    Article  CAS  Google Scholar 

  11. Liu P, Zhang XG, Yao Y, Wang J (2010) Reac Kinet Mech Catal 100:217–226

    Google Scholar 

  12. Fottinger K, Zorn K, Vinek H (2005) Appl Catal A 284:69–75

    Article  Google Scholar 

  13. Iglesia E, Soled SL, Kramer GM (1993) J Catal 144:238–253

    Article  CAS  Google Scholar 

  14. Miyaji A, Echizen T, Nagata K, Yoshinaga Y, Okuhara T (2003) J Mol Catal A Chem 201:145–153

    Article  CAS  Google Scholar 

  15. Wang J, Lin Z, Han SY, Eum M, Lee CW (2003) Ind Eng Chem 9:281–286

    CAS  Google Scholar 

  16. Chao KJ, Wu H, Leu L (1996) Appl Catal A 143:223–243

    Article  CAS  Google Scholar 

  17. Kinger G, Majda D, Vinek H (2002) Appl Catal A 225:301–312

    Article  CAS  Google Scholar 

  18. Liu P, Wang J (2009) Appl Catal A 371:142–147

    Article  CAS  Google Scholar 

  19. Souolah A, Lemberton JL, Pinard L, Chater M, Magnoux P, Mojord K (2008) Appl Catal A 336:23–28

    Article  Google Scholar 

  20. Coonradt ML, Garwood WE (1964) Ind Eng Chem Process Design Dev 3(1):38–45

    Article  CAS  Google Scholar 

  21. Hu YF, Wang XS, Guo XW, Li SL, Hu S, Sun HB, Bai L (2005) Catal Lett 100:59–65

    Article  CAS  Google Scholar 

  22. Roldán R, Romero FJ, Sanchidrián C, Marinas JM, Gómez JP (2005) Appl Catal A 288:104

    Article  Google Scholar 

  23. Tromp M, van Bokhoven JA, Garriga Oostenbrink MT, Bitter JH, De Jong KP, Koningsberger DC (2000) J Catal 190:209–214

    Article  CAS  Google Scholar 

  24. Wang JA, Zhou XL, Chen LF, Noreña LE, Yu GX, Li CL (2009) J Mol Catal A 299:68–76

    Article  CAS  Google Scholar 

  25. Liu P, Yao Y, Wang J (2010) Reac Kinet Mech Catal 101:465–475

    Article  CAS  Google Scholar 

  26. Cao FF, Wu YJ, Gu J, Wang J (2011) Mater Chem Phys 130:727–732

    Article  CAS  Google Scholar 

  27. Wong ST, Lee JF, Chen JM, Mou CY (2001) J Mol Catal A Chem 165:159–167

    Article  CAS  Google Scholar 

  28. Konnov SV, Sushkevich VL, Monachova YV, Yushcenko VV, Ponomareva OA, Ivanova II (2008) Stud Surf Sci Catal 174:1167

    Article  Google Scholar 

  29. Hincapie BO, Garces LJ, Zhang Q, Sacco A, Suib SL (2004) Micropor Mesopor Mater 67:19–26

    Article  CAS  Google Scholar 

  30. Modhera BK, Chakraborty M, Parikh PA, Jasra RV (2009) Petrol Sci Technol 11:1196–1208

    Article  Google Scholar 

  31. Wei RP, Gu YB, Wang J (2008) Sci China Ser B Chem 51:120

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank greatly the national Natural Science Foundation of China (NSFC Nos. 21136005, 21101094 and 20976084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, Y., Wang, J., Deng, Y. et al. Morphological effect of β zeolite nanocrystallite aggregates as the support of Pt catalyst for the hydroisomerization of n-heptane. Reac Kinet Mech Cat 107, 167–177 (2012). https://doi.org/10.1007/s11144-012-0454-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-012-0454-0

Keywords

Navigation