Reaction Kinetics, Mechanisms and Catalysis

, Volume 105, Issue 1, pp 173–193 | Cite as

Supported nickel catalysts for low temperature methane steam reforming: comparison between metal additives and support modification

  • Monica Dan
  • Maria Mihet
  • Alexandru R. Biris
  • Petru Marginean
  • Valer Almasan
  • George Borodi
  • Fumiya Watanabe
  • Alexandru S. Biris
  • Mihaela D. Lazar


The effect of Ag (1 wt%) and Au (1 wt%) on the catalytic properties of Ni/Al2O3 (7 wt% Ni) for methane steam reforming (MSR) was studied in parallel with the effect of CeO2 (6 wt%) and La2O3 (6 wt%) addition. The addition of 1 wt% Ag to the alumina supported nickel catalyst drastically decreased its catalytic properties at temperatures lower than 600 °C, due to the blockage of metal catalytic centers by silver deposition. The addition of Au and CeO2 (La2O3) to the nickel catalyst improved the methane conversion, CO2 selectivity and hydrogen production at low reaction temperatures (t < 600 °C). At 700 °C under our working conditions, the additives have no important effect in hydrogen production by MSR. The best hydrogen production at low temperatures was obtained for Ni–Au/Al2O3, due to the higher CO2 selectivity, cumulated with slightly higher methane conversion in comparison with Ni/CeO2–Al2O3. At high temperature, Ni/CeO2–Al2O3 is stable for 48 h on stream. Ni–Au/Al2O3 and Ni–Ag/Al2O3 are mainly deactivated due to the temperature effect on Au and Ag nanoparticles and less through coke formation. On Ni/Al2O3 and Ni/La2O3–Al2O3, crystalline, graphitic carbon was deposited after 48 h of reaction leading to catalyst partial deactivation. On the Ni/CeO2–Al2O3 surface, a porous amorphous form of deposited carbon was found, which does not decrease its catalytic activity after 48 h of reaction.


Low temperature methane steam reforming Ni–Au catalyst CeO2 promoted Ni catalyst La2O3 promoted Ni catalyst Coke analysis 

Supplementary material

11144_2011_406_MOESM1_ESM.doc (3.6 mb)
Supplementary material 1 (DOC 3734 kb)


  1. 1.
    Bartels JR, Pate MB, Olson NK (2010) An economic survey of hydrogen production from conventional and alternative energy sources. Int J Hydrogen Energy 35:8371–8384CrossRefGoogle Scholar
  2. 2.
    Moon DJ (2008) Hydrogen production by catalytic reforming of gaseous hydrocarbons. Catal Surv Asia 12:188–202CrossRefGoogle Scholar
  3. 3.
    Holladay JD, Hu J, King DL, Wang Y (2009) An overview of hydrogen production technologies. Catal Today 139:244–260CrossRefGoogle Scholar
  4. 4.
    Rostrup-Nielsen JR (1984) Catalytic steam reforming. In: Anderson JR, Boudart M (eds) Catalysis: science and technology. Springer, New YorkGoogle Scholar
  5. 5.
    Mehta V, Cooper JS (2003) Review and analysis of PEM fuel cell design and manufacturing. J Power Sources 114:32–53CrossRefGoogle Scholar
  6. 6.
    Barelli L, Bidini G, Gallorini F, Servili S (2008) Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: a review. Energy 33:554–570CrossRefGoogle Scholar
  7. 7.
    Chen Y, Cui P, Xiong G, Xu H (2010) Novel nickel based catalysts for low temperature hydrogen production from methane steam reforming in membrane reformer. Asia-Pac J Chem Eng 5:93–100CrossRefGoogle Scholar
  8. 8.
    Iulianelli A, Manzolini G, De Falco M, Campanari S, Longo T, Liguori S et al (2010) H2 production by low pressure methane steam reforming in a Pd–Ag membrane reactor over a Ni-based catalyst: experimental and modeling. Int J Hydrogen Energy 35:11514–11524CrossRefGoogle Scholar
  9. 9.
    Matsumura Y, Nakamori T (2004) Steam reforming of methane over nickel catalysts at low reaction temperature. Appl Catal 258:107–114CrossRefGoogle Scholar
  10. 10.
    Chin Y-H, King D, Roh H-S, Wang Y, Heald SM (2006) Structure and reactivity investigations on supported bimetallic Au–Ni catalysts used for hydrocarbon steam reforming. J Catal 244:153–162CrossRefGoogle Scholar
  11. 11.
    Parizotto NV, Rocha KO, Damyanova S, Passos FB, Zanchet D, Marques CMP et al (2007) Alumina supported Ni catalysts modified with silver for the steam reforming of methane: effect of Ag on the control of coke formation. Appl Catal A 330:12–22CrossRefGoogle Scholar
  12. 12.
    Parizotto NV, Fernandez RF, Marques CMP, Bueno JMC (2007) Promoter effect of Ag and La on stability of Ni/Al2O3 catalysts in reforming of methane processes. Stud Sci Surf Catal 167:421–426CrossRefGoogle Scholar
  13. 13.
    Triantafyllopoulos NC, Neophytides SG (2006) Dissociative adsorption of CH4 on NiAu/YSZ: the nature of adsorbed carbonaceous species and the inhibition of graphitic C formation. J Catal 239:187–199CrossRefGoogle Scholar
  14. 14.
    Araujo JCS, Zanchet D, Rinaldi R, Schuchardt U, Hori CE, Fiero JLG, Bueno JMC (2008) The effects of La2O3 on the structural properties of La2O3–Al2O3 prepared by sol–gel method and on the catalytic performance of Pt/La2O3–Al2O3 towards steam reforming and partial oxidation of methane. Appl Catal B 84:552–562CrossRefGoogle Scholar
  15. 15.
    Cassinelli WH, Feio LSF, Araujo JCS, Hori CE, Noronha FB, Marques CMP et al (2008) Effect of CeO2 and La2O3 on the activity of CeO2–La3O3/Al2O3 supported Pd catalysts for steam reforming of methane. Catal Lett 120:86–94CrossRefGoogle Scholar
  16. 16.
    Yang R, Xing C, Lv C, Shi L, Tsubaki N (2010) Promotional effect of La2O3 and CeO2 an Ni/γ-Al2O3 catalysts for CO2 reforming of CH4. Appl Catal A 385:92–100CrossRefGoogle Scholar
  17. 17.
    Chen J, Wang R, Zhang J, He F, Han S (2005) Effects of preparation methods on properties of Ni/CeO2–Al2O3 catalysts for methane reforming with carbon dioxide. J Mol Catal A 235:302–310CrossRefGoogle Scholar
  18. 18.
    Koo KY, Roh HS, Jung UH, Yoon WL (2009) CeO2 promoted Ni/Al2O3 catalyst in combined steam and carbon dioxide reforming of methane for gas to liquid (GTL) process. Catal Lett 130:217–221CrossRefGoogle Scholar
  19. 19.
    Zhuang Q, Qin Y, Chang L (1991) Promoting effect of cerium oxide in supported nickel catalysts for hydrocarbon steam reforming. Appl Catal 70:1–8CrossRefGoogle Scholar
  20. 20.
    Seo JG, Youn MH, Bang Y, song IK (2011) Hydrogen production by steam reforming of simulated liquefied natural gas (LNG) over mesoporous nickel–M–alumina (M = Ni, Ce, La, Y, Cs, Fe, Co and Mg) aerogel catalysts. Int J Hydrogen Energy 36:3505–3514CrossRefGoogle Scholar
  21. 21.
    Xu J, Zhou W, Wang J, Li Z, Ma J (2009) Characterization and analysis of carbon deposited during the dry reforming of methane over Ni/La2O3/Al2O3 catalysts. Chin J Catal 30:1076–1084CrossRefGoogle Scholar
  22. 22.
    Lazar MD, Dan M, Mihet M, Almasan V, Rednic V, Borodi G (2011) Hydrogen production by low temperature methane steam reforming using Ag and Au modified alumina supported nickel catalysts. Rev Roum Chim 56(6):637–642Google Scholar
  23. 23.
    Dan M, Lazar MD, Rednic V, Almasan V (2011) Methane steam reforming over Ni/Al2O3 promoted by CeO2 and La2O3. Rev Roum Chim 56(6):643–649Google Scholar
  24. 24.
    Froment GF, Bischoff KB (1990) Chemical reactor analysis and design, 2nd edn. Willey, New YorkGoogle Scholar
  25. 25.
    Kuemmerle EA, Heger GJ (1999) The structures of C–Ce2O3+δ, Ce7O12 and Ce11O20. J Solid State Chem 147:485–500CrossRefGoogle Scholar
  26. 26.
    Sanchez-Sanchez MC, Navarro RM, Fierro JLG (2007) Ethanol steam reforming over Ni/La–Al2O3 catalysts: influence on lanthanum loading. Catal Today 129:336–345CrossRefGoogle Scholar
  27. 27.
    Scheffer B, Molhoek P, Moulijn JA (1989) Temperature programmed reduction of NiO–WO3/Al2O3 hydrodesulphurization catalyst. Appl Catal 46:11–17CrossRefGoogle Scholar
  28. 28.
    Maniecki TP, Stadnichenko AI, Maniukievich W, Bawolak K, Mierczynski P, Boronin AI, Jozviak WK (2010) An active phase transformation of surface Ni–Au/Al2O3 catalyst during partial oxidation of methane to synthesis gas. Kinet Catal 51:573–578CrossRefGoogle Scholar
  29. 29.
    Li C, Chen YW (1995) Temperature programmed reduction studies of nickel oxide/alumina catalysts: effects of the preparation methods. Thermochim Acta 256:457–462CrossRefGoogle Scholar
  30. 30.
    Lu Z, Guo Y, Zhang Q, Yagi M, Hatakeyama J, Li H, Chen J, Sakurai M, Karneyama H (2008) A novel catalyst with plate-type anodic alumina supports, Ni/NiAl2O4/γ-Al2O3/alloy, for steam reforming of methane. Appl Catal A 347:200–207CrossRefGoogle Scholar
  31. 31.
    Holmblad PM, Hvolbaek Larsen J, Chorkendorff I (1996) Modification of Ni(111) reactivity toward CH4, CO, and D2 by two dimensional alloying. J Chem Phys 104:7289–7296CrossRefGoogle Scholar
  32. 32.
    Craciun R, Shereck B, Gorte RJ (1998) Kinetic studies of methane steam reforming on ceria-supported Pd. Catal Lett 51:149–153CrossRefGoogle Scholar
  33. 33.
    Zhang ZL, Verykios XE (1994) Carbon dioxide reforming of methane to synthesis gas over supported Ni catalysts. Catal Today 21:589–595CrossRefGoogle Scholar
  34. 34.
    Aparicio LM (1997) Transient isotopic studies and microkinetic modeling of methane reforming over nickel catalysts. J Catal 165(2):262–274CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • Monica Dan
    • 1
  • Maria Mihet
    • 1
  • Alexandru R. Biris
    • 1
  • Petru Marginean
    • 1
  • Valer Almasan
    • 1
  • George Borodi
    • 1
  • Fumiya Watanabe
    • 2
  • Alexandru S. Biris
    • 2
  • Mihaela D. Lazar
    • 1
  1. 1.National Institute for Research and Development of Isotopic and Molecular TechnologiesCluj-NapocaRomania
  2. 2.Applied Science Department, UALR Nanotechnology CenterUniversity of Arkansas at Little RockLittle RockUSA

Personalised recommendations