Skip to main content
Log in

Kinetic modeling of slurry propylene polymerization using a heterogeneous multi-site type Ziegler–Natta catalyst

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The semi-batch slurry polymerization of propylene using a heterogeneous multi-site type Ziegler–Natta catalytic system was studied. A simple kinetic model including initiation, propagation, spontaneous chain transfer, chain transfer to hydrogen, chain transfer to monomer and chain transfer to cocatalyst, and spontaneous deactivation was developed to predict instantaneous rates of polymerization and average molecular weights of final products. Estimation of kinetic parameters was performed using online measurements of polymerization rate and end of batch measurements of average molecular weights. The multivariable nonlinear optimization problem was solved using the Nelder–Mead simplex method for three different site types at three levels of temperatures. The model predicts that the propagation reaction has a lower activation energy than chain transfer reactions which leads to a decrease of molecular weight at elevated temperatures. The deactivation reaction has a higher activation energy than the propagation reaction, which results in decreasing the final rate of polymerization at higher temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mattos Neto AG, Freitas MF, Nele M, Pinto JC (2005) Modeling ethylene/1-butene copolymerizations in industrial slurry reactors. Ind Eng Chem Res 44:2697–2715

    Article  CAS  Google Scholar 

  2. Gonzalez-Ruiz RA, Quevedo-Sanchez B, Laurence RL, Henson MA, Coughlin EB (2006) Kinetic modeling of slurry propylene polymerization using rac-ET(Ind)2ZrCl2/MAO. AIChE J 52:1824–1835

    Article  CAS  Google Scholar 

  3. Ahmadi M, Nekoomanesh M, Arabi H (2010) A Simplified comprehensive kinetic scheme for modeling of ethylene/1-butene copolymerization using Ziegler–Natta catalysts. Macromol React Eng 4:135–144

    Article  CAS  Google Scholar 

  4. Zahedi M, Ahmadi M, Nekoomanesh M (2008) Influence of molecular weight distribution on flow properties of commercial polyolefins. J Appl Polym Sci. 108:3565–3571

    Article  CAS  Google Scholar 

  5. Zahedi M, Ahmadi M, Nekoomanesh M (2008) Influence of microstructure and morphology on stress–strain behavior of commercial high density polyethylene. J Appl Polym Sci 110:624–631

    Article  CAS  Google Scholar 

  6. Latado A, Embiruc M, Neto AMG, Pinto JC (2001) Modeling of end-use properties of poly(propylene/ethylene) resins. J C Polym Test 20:419–439

    Article  CAS  Google Scholar 

  7. Wang WJ, Yan D, Zhu S, Hamielec AE (1998) Kinetics of long chain branching in continuous solution polymerization of ethylene using constrained geometry metallocene. Macromolecules 31:8677–8683

    Article  CAS  Google Scholar 

  8. Moen, O (2002) Models for bench scale via pilot to commercial scale. In: 2nd European conference on reaction engineering of polyolefins, Wiley Inter Science, Lyon

  9. Yiannoulahis H, Yiagopoulos A, Pladis P, Kiparissides C (2000) Comprehensive dynamic model for the calculation of the molecular weight and long chain branching distributions in metallocene-catalyzed ethylene polymerization reactors. Macromolecules 33:2757–2766

    Article  Google Scholar 

  10. Soares JBP, Hamielec AE (1996) Copolymerization of olefins in a series of continuous stirred-tank reactors using heterogeneous and supported metallocene catalysts: I. General mathematical model. Polym React Eng 4:153–191

    CAS  Google Scholar 

  11. Vele Estrada JM, Hamielec AE (1994) Modeling of ethylene polymerization with Cp2ZrCl2/MAO catalyst. Polymer 35:808–818

    Article  Google Scholar 

  12. Bergstra MF, Weickert G (2005) Ethylene Polymerization Kinetics with a Heterogeneous Metallocene Catalyst–Comparison of Gas and Slurry Phases. Macromol Mater Eng 290:610–620

    Article  CAS  Google Scholar 

  13. Kaminskey W, Muller F, Sperber O (2005) Comparison of olefin polymerization processes with metallocene catalysts. Macromol Mater Eng 290:347–352

    Article  Google Scholar 

  14. Khare, NP., Ph.D. thesis, Virginia Polytechnic Institute and State University, Virginia (2003)

  15. Kissin YV (1993) Ethylene polymerization kinetics with heterogeneous Ziegler Natta catalysts. Makromol Chem Macromol Symp 66:83–94

    Article  CAS  Google Scholar 

  16. Huang J, Rempel GL (1997) Kinetic study of propylene polymerization using Et(H4Ind)2ZrCl2/methylalumoxane catalysts. Ind Eng Chem Res 36:1151–1157

    Article  CAS  Google Scholar 

  17. Han-Adebekun GC, Hamba M, Ray WH (1997) Kinetic study of gas phase olefin polymerization with a TiCl4/MgCl2 catalyst I. Effect of polymerization conditions. J Polym Sci Part A Polym Chem 35:2063–2074

    Article  CAS  Google Scholar 

  18. Hamba M, Han-Adebekun GC, Ray WH (1997) Kinetic study of gas phase olefin polymerization with a TiCl4/MgCl2 catalyst. II. Kinetic parameter estimation and model building. J Polym Sci Part A Polym Chem 35:2075–2096

    Article  CAS  Google Scholar 

  19. Kissin YV, Mink RI, Nowlin TE (1999) Ethylene polymerization reactions with Ziegler–Natta catalysts. I. Ethylene polymerization kinetics and kinetic mechanism. J Polym Sci Part A Polym Chem 37:4255–4272

    Article  CAS  Google Scholar 

  20. Belelli PG, Ferreira ML, Lacunza MH, Damiani DE, Brandolin A (2001) Propylene polymerization in a semibatch reactor. Analysis of soluble metallocene catalyst behavior through reactor modeling. Polym Eng Sci 41:2082–2094

    Article  CAS  Google Scholar 

  21. Gene Xu Z, Chakravarti S, Ray WH (2001) Kinetic study of olefin polymerization with a supported metallocene catalyst I. Ethylene/propylene copolymerization in gas phase. J Appl Polym Sci 80:81–114

    Article  Google Scholar 

  22. Matos V, Matos Neto AG, Pinto JC (2001) Method for quantitative evaluation of kinetic constants in olefin polymerizations. I. Kinetic study of a conventional Ziegler–Natta catalyst used for propylene polymerizations. J Appl Polym Sci 79:2076–2108

    Article  CAS  Google Scholar 

  23. Meier GB, Weickert G, Van Swaaij WPM (2001) Gas phase polymerization of propylene. Reaction kinetics and molecular weight distribution. J Polym Sci 39:500–513

    CAS  Google Scholar 

  24. Chakravarti S, Ray WH (2001) Kinetic study of olefin polymerization with a supported metallocene catalyst. II. Ethylene/1-hexene copolymerization in gas phase. J Appl Polym Sci 80:1096–1119

    Article  CAS  Google Scholar 

  25. Chakravarti S, Ray WH (2001) Kinetic study of olefin polymerization with a supported metallocene catalyst. III. Ethylene homopolymerization in slurry. J Appl Polym Sci 81:2901–2917

    Article  CAS  Google Scholar 

  26. Chakravarti S, Ray WH, Zhang SX (2001) Kinetic study of olefin polymerization with a supported metallocene catalyst. IV. Comparison of bridged and unbridged catalyst in gas phase. J Appl Polym Sci 81:1451–1459

    Article  CAS  Google Scholar 

  27. Matos V, Matos Neto AG, Nele M, Pinto JC (2002) Method for quantitative evaluation of kinetic constants in olefin polymerizations. II. Kinetic study of a high-activity Ziegler–Natta catalyst used for bulk propylene polymerizations. J Appl Polym Sci 86:32263245

    Article  Google Scholar 

  28. Lahelin M, Kokko E, Lehmus P, Pitkanen P, Lofgren B, Seppala J (2003) Propylene polymerization with rac-SiMe2 (2-Me-4-PhInd)2 ZrMe2/MAO: polymer characterization and kinetic Models. Macromol Chem Phys 204:1323–1337

    Article  CAS  Google Scholar 

  29. Yao KZ, Shaw BM, Kou B, McAuley KB, Bacon DW (2003) Modeling ethylene/butene copolymerization with multi-site catalysts: parameter estimability and experimental design. Polym React Eng 11:563–588

    Article  CAS  Google Scholar 

  30. Kou B, McAuley KB, Hsu CCJ, Bacon DW (2005) Mathematical model and parameter estimation for gas-phase ethylene/hexene copolymerization with metallocene catalyst. Macromol Mater Eng 290:537–557

    Article  CAS  Google Scholar 

  31. Kou B, McAuley KB, Hsu CCJ, Bacon DW, Yao KZ (2005) Mathematical model and parameter estimation for gas-phase ethylene homopolymerization with supported metallocene catalyst. Ind Eng Chem Res 44:2428–2442

    Article  CAS  Google Scholar 

  32. Quevedo-Sanchez B, Nimmons JF, Coughlin EB, Henson MA (2006) Kinetic modeling of the effect of MAO/Zr ratio and chain transfer to aluminum in zirconocene catalyzed propylene polymerization. Macromolecules 39:4306–4316

    Article  CAS  Google Scholar 

  33. Soares JBP, Hamielec AE (1995) Deconvolution of chain-length distributions of linear polymers made by multiple-site-type catalysts. Polymer 36:2257–2263

    Article  CAS  Google Scholar 

  34. Lagarias JC, Reeds JA, Wright MH, Wright PE (1998) Convergence properties of the Nelder–Mead simplex method in low dimensions. SIAM J Optim 9:112–147

    Article  Google Scholar 

  35. Ahmadi M, Nekoomanesh M, Jamjah R, Zohuri GH, Arabi H (2007) Modeling of slurry polymerization of ethylene using a soluble Cp2ZrCl2/MAO catalytic system. Macromol Theory Simul 16:557–565

    Article  CAS  Google Scholar 

  36. Soares JBP (2001) Mathematical modeling of the microstructure of polyolefins made by coordination polymerization: a review. Chem Eng Sci 56:4131–4153

    Article  CAS  Google Scholar 

  37. Vickroy VV, Schneider H, Abbott RF (1993) The separation of SEC curves of HDPE into flory distributions. J Appl Polym Sci 50:551–554

    Article  CAS  Google Scholar 

  38. Kissin YV, Mirabella FM, Meverden CC (2005) Multi-center nature of heterogeneous Ziegler–Natta catalysts: TREF confirmation. J Polym Sci Part A Polym Chem 43:4351–4362

    Article  CAS  Google Scholar 

  39. Kim JD, Soares JBP, Rempel GL (1999) Synthesis of tailor-made polyethylene through the control of polymerization conditions using selectively combined metallocene catalysts in a supported system. J Polym Sci Part A Polym Chem 37:331–339

    Article  CAS  Google Scholar 

  40. Liu Z, Somsook E, Landis CRA (2001) 2H-Labeling scheme for active-site counts in metallocene-catalyzed alkene polymerization. J Am Chem Soc 123:2915–2916

    Article  CAS  Google Scholar 

  41. Busico V, Cipullo R, Esposito V (1999) Stopped-flow polymerizations of ethene and propene in the presence of the catalyst system rac-Me2Si (2-methyl-4-phenyl-1-indenyl)2 ZrCl2/methylaluminoxane. Macromol Rapid Commun 20:116–121

    Article  CAS  Google Scholar 

  42. Odian G (2004) Principles of Polymerization, 4th edn. Wiley, New Jersey, pp 662–664

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Arabi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nassiri, H., Arabi, H. & Hakim, S. Kinetic modeling of slurry propylene polymerization using a heterogeneous multi-site type Ziegler–Natta catalyst. Reac Kinet Mech Cat 105, 345–359 (2012). https://doi.org/10.1007/s11144-011-0391-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-011-0391-3

Keywords

Navigation