Skip to main content

V-Mn-MCM-41 catalyst for the vapor phase oxidation of o-xylene

Abstract

The role of V and Mn incorporated mesoporous molecular sieves was investigated for the vapor phase oxidation of o-xylene. Mesoporous monometallic V-MCM-41 (Si/V = 25, 50, 75 and 100), Mn-MCM-41 (Si/Mn = 50) and bimetallic V-Mn-MCM-41 (Si/(V + Mn) = 100) molecular sieves were synthesized by a direct hydrothermal (DHT) process and characterized by various techniques such as X-ray diffraction, DRUV-Vis spectroscopy, EPR, and transmission electron microscopy (TEM). From the DRUV-Vis and EPR spectral study, it was found that most of the V species are present as vanadyl ions (VO2+) in the as-synthesized catalysts and as highly dispersed V5+ ions in tetrahedral coordination in the calcined catalysts. The activity of the catalysts was measured and compared with each other for the gas phase oxidation of o-xylene in the presence of atmospheric air as an oxidant at 573 K. Among the various catalysts, V-MCM-41 with Si/V = 50 exhibited high activity towards production of phthalic anhydride under the experimental condition. The correlation between the phthalic anhydride selectivity and the physico-chemical characteristics of the catalyst was found. It is concluded that V5+ species present in the MCM-41 silica matrix are the active sites responsible for the selective formation of phthalic anhydride during the vapor phase oxidation of o-xylene.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Fig. 9

Reference

  1. Horvath IT (2003) Encyclopedia of catalysis, Vol 6, Wiley Interscience Publication, p 141

  2. Kaneda K, Yamashita T, Matsushita T, Ebitani K (1998) J Org Chem 63:1750

    Article  CAS  Google Scholar 

  3. Matsumoto M, Watanabe N (1984) J Org Chem 49:3435

    Article  CAS  Google Scholar 

  4. Murahashi S, Naota T, Hirai N (1993) J Org Chem 58:7318

    Article  CAS  Google Scholar 

  5. Mark′o IE, Giles PR, Tsukazaki M, Chell′e-Regnaut I, Urch CJ, Brown SM (1997) J Am Chem Soc 119:12661

    Article  Google Scholar 

  6. HSDB 1995; National Cancer Institute (NCI), (1979)

  7. D R P 91, 202 (1896); Brit. Patent 18,221 (1896). See Chem. Zenir., 68 (1897), I, 1040; J.Soc.Chem. Ind. 1897, 16, 676

  8. Dias CR, Portela MF, Galan-Fereres M, Banares MA, Lopez Granados M, Pena MA, Fierro JLG (1997) Cat Letr 43:117

    Article  CAS  Google Scholar 

  9. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) J Am Chem Soc 114:10834

    Article  CAS  Google Scholar 

  10. Keshavaraja A, Ramaswamy V, Soni HS, Ramaswamy AV, Ratnasamy P (1995) J Catal 157:501

    Article  CAS  Google Scholar 

  11. Yuan ZY, Wang JZ, Li HX, Chang ZX (2001) Mic Meso Mate 43:227

    Article  CAS  Google Scholar 

  12. Tanev PT, Chibwe M, Pinnavaia TJ (1994) Nature 368:321

    Article  CAS  Google Scholar 

  13. Chen YW, Lu YH (1999) Ind Eng Chem Res 38:1893

    Article  CAS  Google Scholar 

  14. Chen YW, Koh KK, Wang YM (2000) J Chin Inst Chem Engrs 31:123

    CAS  Google Scholar 

  15. Santhanaraj D, Suresh C, Vijayan P, Venkatathri N, Shanthi K (2010) Reac Kinet Mech Cat 99:446

    Google Scholar 

  16. Venuto PB (1994) Micropor Mater 2:297

    Article  CAS  Google Scholar 

  17. Bellusi G, Rigutto MS, Jansen JC, Stocker M, Karge HG, Weitkamp J (1994) Stud Surf Sci Cat 85:177

    Article  Google Scholar 

  18. Reddy KM, Moudrakovski I, Sayari A (1994) J Chem Soc Chem Commun 12:1059

    Google Scholar 

  19. Sayari A, Karra VR, Reddy JS, Moudrakovski IL (1994) Mater Res Soc Symp Proc 371:81

    Article  Google Scholar 

  20. Burch R, Cruise N. A, Gleeson D, Tsang SC (1996) J Chem Soc Chem Commun 8:951

    Google Scholar 

  21. Burch R, Cruise NA, Gleeson D, Tsang SC (1998) J Mater Chem 8:227–231

    Article  CAS  Google Scholar 

  22. Luan Z, Xu J, He H, Klinowski J, Kevan L (1996) J Phys Chem 100:19595

    Article  CAS  Google Scholar 

  23. Sing KSW, Everett DH, Haul RAW, Moscow L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Pure Appl Chem 57:603

    Article  CAS  Google Scholar 

  24. Shylesh S, Singh AP (2005) J Catal 233:359

    Article  CAS  Google Scholar 

  25. Chenite A, Page LY, Sayari A (1995) Chem Mater 7:1015

    Article  CAS  Google Scholar 

  26. Morey M, Davidson A, Eckert H, Stucky GD (1996) Chem Mater 8:486

    Article  CAS  Google Scholar 

  27. Parvulescu V, Anastasescu C, Su BL (2004) J Mol Catal A 211:143

    Article  CAS  Google Scholar 

  28. Jia MJ, Valenzuela RX, Amoros P, Beltran-Porter D, El-Haskouri J, Marcos MD, Cortes Corberan V (2004) 91:43

Download references

Acknowledgments

The authors would like to thank the Defence Research and Development Organization (DRDO) of India for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Mahendiran.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mahendiran, C., Maiyalagan, T., Vijayan, P. et al. V-Mn-MCM-41 catalyst for the vapor phase oxidation of o-xylene. Reac Kinet Mech Cat 105, 469–481 (2012). https://doi.org/10.1007/s11144-011-0383-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-011-0383-3

Keywords

  • V and Mn-MCM-41
  • Vapor phase
  • Oxidation
  • o-xylene
  • Phthalic anhydride