Skip to main content
Log in

Using β-MCM41 composite molecular sieves as supports of bifunctional catalysts for the hydroisomerization of n-heptane

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

β-MCM41 composite molecular sieves were hydrothermally synthesized using NaOH treated β zeolite as precursors, and Pt/β-MCM41 bifunctional catalysts were prepared by impregnation. Hβ, desilicated Hβ by NaOH treatment (Dβ), and the physical mixture of Hβ and MCM41 (β+MCM41) were also used as control supports for bifunctional catalysts. All the catalysts were characterized by ICP, XRD, BET, nitrogen adsorption–desorption isotherm and NH3-TPD, and evaluated in the hydroisomerization of n-heptane using an atmospheric fixed bed flow reactor. Dβ, β+MCM41, or β-MCM41 supported Pt catalysts showed higher selectivity to isoheptanes than the counterpart Pt/Hβ did due to the presence of mesopores in addition to the zeolite micropores. Moreover, Pt/β-MCM41 was demonstrated to be a much more selective catalyst among them because the connection between mesopores and micropores accelerated the diffusion of larger molecules of isoheptanes. Under optimal conditions, Pt/β-MCM41 provided a very high selectivity to isomerization of 96.5%, coupled with a considerable high conversion of n-heptane of 56.0%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dorado F, Romero R, Cañizares P (2002) Appl Catal A 236:235

    Article  CAS  Google Scholar 

  2. Tromp M, van Bokhoven JA, Garriga Oostenbrink MT, Bitter JH, de Jong KP, Koningsberger DC (2000) J Catal 190:209

    Article  CAS  Google Scholar 

  3. Chica A, Corma A (1999) J Catal 187:167

    Article  CAS  Google Scholar 

  4. Al-Kandari H, Al-Kharafi F, Katrib A (2009) Appl Catal A 361:81

    Article  CAS  Google Scholar 

  5. Iglesia E, Soled SL, Kramer GM (1993) J Catal 144:238

    Article  CAS  Google Scholar 

  6. Miyaji A, Echizen T, Nagata K, Yoshinaga Y, Okuhara T (2003) J Mol Catal A 201:145

    Article  CAS  Google Scholar 

  7. Pope TD, Kriz JF, Stanciulescu M, Monnier J (2002) Appl Catal A 233:45

    Article  CAS  Google Scholar 

  8. Wang ZB, Kamo A, Yoneda T, Komatsu T, Yashima T (1997) Appl Catal A 159:119

    Article  CAS  Google Scholar 

  9. Liu Y, Guo WP, Zhao XS, Lian J, Dou J, Kooli F (2006) J Porous Mater 13:359

    Article  CAS  Google Scholar 

  10. Akhnedov VM, Al-Khowaiter SH, Al-Refai JK (2003) Appl Catal A 252:353

    Article  Google Scholar 

  11. Wang JA, Zhou XL, Chen LF, Noreña LE, Yu GX, Li CL (2009) J Mol Catal A 299:68

    Article  CAS  Google Scholar 

  12. Kinger G, Majda D, Vinek H (2002) Appl Catal A 225:301

    Article  CAS  Google Scholar 

  13. Liu Y, Zhang W, Liu Z, Xu S, Wang Y, Xie Z, Han X, Bao X (2008) J Phys Chem C 112:15375

    Article  CAS  Google Scholar 

  14. Guo W, Huang L, Deng P, Xue Z, Li Q (2001) Microporous Mesoporous Mater 44/45:427

    Article  Google Scholar 

  15. Ooi Y-S, Zakaria R, Mohamed AR, Bhatia S (2004) Appl Catal A 274:15

    Article  CAS  Google Scholar 

  16. Zhang HJ, Li YD (2008) Powder Technol 183:73

    Article  CAS  Google Scholar 

  17. Wang S, Dou T, Li YP, Zhang Y, Li XF, Yan ZC (2005) Catal Commun 6:87

    Article  CAS  Google Scholar 

  18. Raybaud P, Patrigeon A, Toulhoat H (2001) J Catal 197:98

    Article  CAS  Google Scholar 

  19. Liu P, Zhang XG, Yao Y, Wang J (2010) Reac Kinet Mech Catal 100:217

    CAS  Google Scholar 

  20. Konnov SV, Sushkevich VL, Monachova YV, Yushcenko VV, Ponomareva OA, Ivanova II (2008) Stud Surf Sci Catal 174:1167

    Article  Google Scholar 

  21. Luechinger M, Frunz L, Pirngruber GD, Prins R (2003) Microporous Mesoporous Mater 64:203

    Article  CAS  Google Scholar 

  22. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710

    Article  CAS  Google Scholar 

  23. Xu HY, Guan JQ, Wu SJ, Kan QB (2009) J Colloid Interface Sci 329:346

    Article  CAS  Google Scholar 

  24. de Lucas A, Sánchez P, Dorado F, Ramos MJ, Valverde JL (2005) Appl Catal A 294:215

    Article  Google Scholar 

  25. Chica A, Corma A, Miguel PJ (2001) Catal Today 65:101

    Article  CAS  Google Scholar 

  26. Viswanadham N, Dixit L, Gupta JK, Garg MO (2006) J Mol Catal A 258:15

    Article  CAS  Google Scholar 

  27. Patrigeon A, Benazzi E, Travers Ch, Bernhard JY (2001) Catal Today 65:149

    Article  CAS  Google Scholar 

  28. Hu YF, Wang XS, Guo XW, Li SL, Hu S, Sun HB, Bai L (2005) Catal Lett 100:59

    Article  CAS  Google Scholar 

  29. Roldán R, Romero FJ, Jiménez-Sanchidrián C, Marinas JM, Gómez JP (2005) Appl Catal A 288:104

    Article  Google Scholar 

  30. López CM, Sazo V, Pérez P, García LV (2010) Appl Catal A 372:108

    Article  Google Scholar 

  31. Kinger G, Vinek H (2001) Appl Catal A 218:139

    Article  CAS  Google Scholar 

  32. Zhang W, Smirniotis PG (1999) J Catal 182:400

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank greatly the Jiangsu Provincial Key Natural Science Foundation for Universities (No. 06KJA53012), and National Natural Science Foundation of China (Nos. 20476046 and 20976084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, P., Yao, Y. & Wang, J. Using β-MCM41 composite molecular sieves as supports of bifunctional catalysts for the hydroisomerization of n-heptane. Reac Kinet Mech Cat 101, 465–475 (2010). https://doi.org/10.1007/s11144-010-0239-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-010-0239-2

Keywords

Navigation