Skip to main content

Degradation of humic acids through heterogeneous catalytic ozonation with bone charcoal

Abstract

Catalytic ozonation has recently been used as a new means of contaminant removal from water and wastewater. In this study, bone charcoal (BC), a new catalyst prepared under laboratory conditions, was used to catalyze the ozonation of humic substances (HS) in aqueous solutions. The catalytic effect of bone charcoal and the relevant parameters of this ozonation process (solution pH, temperature, scavenger effect, humic acids concentration and BC dosage) were investigated. In the catalytic ozonation experiments, the degradation kinetics was investigated. The reaction rate and the rate constant were determined. The results showed that using a BC catalyst in the ozonation of HS produced a 1.43- and 1.56-fold increase in reaction rates compared to the sole ozonation processes (SOP) under acidic and alkaline conditions, respectively. Furthermore, the applicability of heterogeneous catalytic ozonation with bone charcoal (HCOBC) to humic acid degradation was evaluated by performing comparisons with H2O2, O3, O3/H2O2 and O3/H2O2/BC processes. With the use of the Arrhenius equation, the activation energy (Ea) was calculated to be 10 kJ mol−1. The results also showed that under the different temperatures, the reaction of the catalytic ozonation of HS was defined as diffusion controlled in accordance with the activation energy. These findings suggest that the HCOBC can be applied as an efficient and feasible method for the removal of HS from water.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Zhang J, Lee KH, Cui L, Jeong TS (2009) J Ind Eng Chem 15:185–189

    CAS  Google Scholar 

  2. Kasprzyk-Hordern B, Ziółek M, Nawrocki J (2003) Appl Catal B 46:639–669

    Article  CAS  Google Scholar 

  3. Faria PCC, Monteireo JJM, Pereia MFR (2009) Chemosphere 74:818–824

    Article  CAS  Google Scholar 

  4. Qu J, Li H, Liu H, He H (2004) Catal Today 90:291–296

    Article  CAS  Google Scholar 

  5. Faria PCC, Pereia M (2008) Appl Catal 79:237–243

    Article  CAS  Google Scholar 

  6. Li D, Qu J (2009) J Environ Sci 21:713–719

    Article  CAS  Google Scholar 

  7. He K, Dong YM, Li Z, Yin L, Zhang AM, Zheng YC (2008) J Hazard Mater 159:587–592

    Article  CAS  Google Scholar 

  8. Zhao L, Ma J, Sun ZZ, Zhai XD (2008) Appl Catal B 83:256–264

    Article  CAS  Google Scholar 

  9. Valdes H, Farfan VJ, Manoli JA, Zaror CA (2009) J Hazar Mater 165:915–922

    Article  CAS  Google Scholar 

  10. Lee JE, Jin BS, Cho SH, Han SH, Joo OS, Jung KD (2005) React Kinet Catal Lett 85:65–71

    Article  CAS  Google Scholar 

  11. Chen YN, Chai LY, Shu YD (2008) J Hazard Mater 160:168–172

    Article  CAS  Google Scholar 

  12. Medellin-Castillo N, Leyva-Ramos R, Ocampo-Perez R, Garcia de la cruz R, Aragon-Pina A, Matinez-Rosales J et al (2007) Ind Eng Chem Res 46:9205–9212

    Article  CAS  Google Scholar 

  13. Hassan SSM, Awaad NS, Aboterika AHA (2008) J Hazard Mater 154:992–997

    Article  CAS  Google Scholar 

  14. Chung Chen K, Wang YH, Chang YH (2009) Desalination 249:929–935

    Article  Google Scholar 

  15. Simpson DR (2008) Water Res 42:2839–2848

    Article  CAS  Google Scholar 

  16. Karnik BS, Davies SH, Baumann MJ, Masten SJ (2005) Water Res 39:2839–2850

    Article  CAS  Google Scholar 

  17. Sobecka BT, Morawski AW (2006) Desalination 198:265–273

    Article  Google Scholar 

  18. APHA, AWWA, WPCF (2005) Standard methods for examination of water and wastewater. Washington

  19. Bader H, Hoignc J (1981) Water Res 15:449–456

    Article  CAS  Google Scholar 

  20. TM AS (2003) Standard test method for GAC. American Society, USA

    Google Scholar 

  21. Wang SG, Sun XF, Liu XW (2008) J Chem Eng 142:239–247

    Article  CAS  Google Scholar 

  22. Dastgheib SA, Karanfil T, Cheng W (2004) Carbon 42:547–557

    Article  CAS  Google Scholar 

  23. Pirgalioglu S, Tulay AO (2009) Appl Catal 363:157–163

    Article  CAS  Google Scholar 

  24. Park JS, Choi H, Cho J (2004) Water Res 38:2285–2292

    Article  CAS  Google Scholar 

  25. Anirudhan TS, Ramachandran M (2007) Appl Catal Sci 35:276–281

    CAS  Google Scholar 

  26. Oguz E, Tortum A, Keskinler B (2008) J Hazard Mater 157:455–463

    Article  CAS  Google Scholar 

  27. Erol F, Ozbelge A (2007) J Chem Eng 139:272–283

    Article  Google Scholar 

  28. Valdes H, Murillo FA, Manoli JA, Zaror CA (2008) J Hazard Mater 153:1036–1042

    Article  CAS  Google Scholar 

  29. Zhao L, Sun Z, Ma J, Liu H (2009) Environ Sci Technol 43:2047–2053

    Article  Google Scholar 

  30. Valdes H, Zaror CA (2006) Chemosphere 65:1131–1136

    Article  CAS  Google Scholar 

  31. Alvarez PM, Garcia-Araya JF, Beltran FJ, Giraldez I, Jaramillo J, Gomez-serrano V (2006) Carbon 44:3102–3113

    Article  CAS  Google Scholar 

  32. Tao W, Cui F, Xu Z, Ao Z (2008) Clean 36:893–899

    Google Scholar 

  33. Larry DB, Judkings JR, Weand BL (1984) Process chemistry for water and wastewater treatment. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  34. Oguz E, Keskinler B, Tortum A (2008) Chem Eng J 141:119–129

    Article  CAS  Google Scholar 

  35. Imai D, Dabwan AHA, Koneco S, Katsumata H (2009) Chem Eng J 148:336–341

    Article  CAS  Google Scholar 

  36. Capar G, Yetis U (2002) Water Res 36:1379–1384

    Article  CAS  Google Scholar 

  37. Garcia R, Aragues JL, Ovellerio JL (1998) Water Res 32:57–62

    Article  Google Scholar 

  38. Kitis M, Kaplan SS (2007) Chemosphere 68:1846–1853

    Article  CAS  Google Scholar 

  39. Zhao L, Ma J, Sun ZZ (2008) Appl Catal B 79:244–253

    Article  CAS  Google Scholar 

  40. Sanchez-Polo M, Von Gunten U (2005) Water Res 39:3189–3198

    Article  CAS  Google Scholar 

  41. Sanchez-Polo M, Rivera-Utrilla J, Von Gunten U (2006) Water Res 40:3375–3384

    Article  CAS  Google Scholar 

  42. Rivera-Utrilla J, Sanchez-Polo M (2002) Appl Catal B 39:319–329

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Tarbiat Modares University, Iran, for financial and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Mortazavi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mortazavi, S.B., Asgari, G., Hashemian, S.J. et al. Degradation of humic acids through heterogeneous catalytic ozonation with bone charcoal. Reac Kinet Mech Cat 100, 471–485 (2010). https://doi.org/10.1007/s11144-010-0192-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-010-0192-0

Keywords

  • Humic substances
  • Bone charcoal
  • Catalytic ozonation
  • Advanced oxidation processes
  • Sole ozonation processes