Skip to main content
Log in

Impacts of CuO x additive on the CO oxidation activity and related surface and bulk properties of a NANO-CeO2 Catalyst

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Nano-particle, pure and CuO x -modified, fluorite-structured cubic-CeO2 were successfully synthesized with surface areas near 240 m2/g applying a microemulsion method with mixed templating surfactants (viz. DDAB and Brij®35). Following calcination at 400–800 °C, the products were characterized by X-ray powder diffractometry, X-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy, and, then, tested as catalysts for methylbutynol decomposition and CO oxidation in the gas phase. Results obtained showed the pure and CuO x -modified cerias to exhibit comparable activities towards the alcohol decomposition into acetone and acetylene, but the modified ceria exhibited considerably higher activity towards the CO oxidation than the pure one. The calcination product of CuO x -modified ceria at 800 °C was capable of lowering the light-off temperature of the CO oxidation from 300 °C (on the pure) down to 70 °C. Surface chemical consequences of the CuO x -modification, viz. increasing the Ce(III)/Ce(IV) atomic ratio, as well as the establishment of Cu(I) and Cu(II) sites, have been allocated the responsibility of the observed upsurge of the CO oxidation activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Trovarelli A (ed) (2002) Catalysis by ceria and related materials. Imperial College Press, London

    Google Scholar 

  2. Choudhary TV, Banerjee S, Choudhary VR (2002) Appl Catal A 234:1

    Article  CAS  Google Scholar 

  3. Haneda M, Mizushima T, Kakuta N, Ueno A, Sato Y, Matsuura S, Kasahara K, Sato M (1993) Bull Chem Soc Jpn 66:1279

    Article  CAS  Google Scholar 

  4. Ostuka K, Hatano M, Morikawa A (1985) React Solids 87:1

    Google Scholar 

  5. Brauer G, Gingerich KA, Holtzschmidt U (1960) J Inorg Nucl Chem 16, 77 and 87

    Google Scholar 

  6. Kim S, Merkle R, Maier J (2004) Surf Sci 549:196

    Article  CAS  Google Scholar 

  7. Wang X, Rodriguez JA, Hanson JC, Gamarra D, Martinez-Arias A, Fernandez-Garcia M (2005) J Phys Chem B 109:19595

    Article  CAS  Google Scholar 

  8. Bumajdad A, Zaki MI, Eastoe J, Pasupulety L (2004) Langmuir 20:11223

    Article  CAS  Google Scholar 

  9. Luo M-F, Ma J-M, Lu J-O, Song Y-P, Wang C-J (2007) J Catal 246:52

    Article  CAS  Google Scholar 

  10. Schulz H, Stark WJ, Maciejewski M, Pratsinis SE, Baiker A (2003) Mater Chem 13:2979

    Article  CAS  Google Scholar 

  11. Mamontov E, Egami T, Brezny R, Koranne M, Tyagi S (2000) J Phys Chem B 104:11110

    Article  CAS  Google Scholar 

  12. Aneggi E, Boaro M, de Leitenburg C, Dolcetti G, Trovarelli A (2006) J Alloys Compd 408–412:1096

    Article  Google Scholar 

  13. Rossignol S, Gerard F, Mesnard D, Kappenstein C, Duprez D (2003) Mater Chem 13:3017

    Article  CAS  Google Scholar 

  14. Harrison PG, Ball IK, Azelee W, Daniell W, Goldfarb D (2000) Chem Mater 12:3715

    Article  CAS  Google Scholar 

  15. Avgouropoulos G, Ioannides T (2006) Appl Catal B 67:1

    Article  CAS  Google Scholar 

  16. Schönbrod B, Marino F, Baronetti G, Laborde M (2009) Int J Hydrog Energy 34:4021

    Article  Google Scholar 

  17. Jung CR, Kundu A, Nam SW, Lee H-I (2008) Appl Catal B 84:426

    Article  CAS  Google Scholar 

  18. Ramaswamy V, Malwadkar S, Chilukuri S (2008) Appl Catal B 84:21

    Article  CAS  Google Scholar 

  19. Gamarra D, Martinez-Arias A (2009) J Catal 263:189

    Article  CAS  Google Scholar 

  20. Pakharukova VP, Moroz EM, Kriventsov VV, Zyuzin DA, Kosmambetova GR, Strizhak PE (2009) Appl Catal A 365:159

    Article  CAS  Google Scholar 

  21. Zhu P, Li J, Huang Q, Yan S, Liu M, Zhou R (2009) J Nat Gas Chem 18:346

    Article  CAS  Google Scholar 

  22. Papavasiliou J, Avgouropoulos G, Ioannides T (2007) Appl Catal B 27:226

    Article  Google Scholar 

  23. Wang X, Rodriguez JA, Hanson JC, Gamarra D, Martinez-Arias A, Fernandez-Garcia M (2006) J Phys Chem B 110:428

    Article  CAS  Google Scholar 

  24. Dijnovic P, Batista J, Pintar A (2008) Appl Catal A 347, 23, 18

    Google Scholar 

  25. Zhu J, Gao Q, Chen Z (2008) Appl Catal B 81:236

    Article  CAS  Google Scholar 

  26. Wang JB, Tsai DH, Huang TJ (2002) J Catal 208:370

    Article  CAS  Google Scholar 

  27. Bera P, Mitra S, Sampath S, Hedge MS (2001) Chem Commun 927

  28. Skarman B, Grandjean D, Benfield RE, Hinz A, Andersson A, Wallenberg LR (2002) J Catal 211:119

    CAS  Google Scholar 

  29. Zhou K, Xu R, Sun X, Chen H, Tian Q, Shen D, Li Y (2005) Catal Lett 101:169

    Article  CAS  Google Scholar 

  30. Lauron-Pernot H, Luck I, Popa JM (1991) Appl Catal 78:213

    Article  CAS  Google Scholar 

  31. Hasan MA, Zaki MI, Pasupulety L (2002) J Mol Catal A 178:125

    Article  CAS  Google Scholar 

  32. Zana RJ (1980) J Colloid Interface Sci 78:330

    Article  CAS  Google Scholar 

  33. Bumajdad A, Eastoe J, Heenan RK, Lu JR, Steytler DC, Eqelhaaf S (1998) J Chem Soc, Faraday Trans 94:2143

    Article  CAS  Google Scholar 

  34. International Center for Diffraction Data, 12 Campus Boulevard, Newton Square, P.A

  35. Matyi RJ, Schwartz LH, Butt JB (1987) Catal Rev Sci Eng 29:41

    Article  Google Scholar 

  36. Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309

    Article  CAS  Google Scholar 

  37. Zaki MI, Kappenstein C (1992) Z Phys Chem 176:97

    CAS  Google Scholar 

  38. Schwab G-M, Holz G (1944) Z Anorg Chem 252:205

    Article  CAS  Google Scholar 

  39. Schwab G-M, Schwab-Agallidis E (1943) Ber Dtsch Chem Ges 76:1228

    Article  Google Scholar 

  40. Schwab G-M, Karatzas A (1944) Z Electrochem 50:242

    CAS  Google Scholar 

  41. Zaki MI, Hasan MA, Pasupulety L (2000) Appl Catal A 198:247

    Article  CAS  Google Scholar 

  42. Peri JB, Hannan RB (1960) J Phys Chem 64:1521

    Article  Google Scholar 

  43. Farragher AL (1979) Adv Colloid Interface Sci 11:3

    Article  CAS  Google Scholar 

  44. Natile MM, Glisenti A (2006) Surface science spectra, vol 4. American Vacuum Society, pp 17–30

  45. Wagner CD, Naumkin AV, Kraut-Vass A, Allison JW, Powell CJ, Rumble JR Jr (2004) NIST X-ray photoelectron spectroscopy database; Web Version: v.3; NIST

  46. Wagner CD, Riggs WM, Davis LE, Moulder JI, Muilenberg GE (1978) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corp, Polo Alto, CA

    Google Scholar 

  47. Kundakovic L, Stephanopoulos MF (1998) Appl Catal A 171:13

    Article  CAS  Google Scholar 

  48. Liu W, Stephanopoulos MF (1995) J Catal 153:304

    Article  CAS  Google Scholar 

  49. Zou HB, Dong XF, Lin WM (2006) Appl. Surf. Sci. 253:2893

    Article  CAS  Google Scholar 

  50. Zhang YW, Si R, Liao CS, Yan CH, Xiao CX, Kou Y (2003) J Phys Chem B 107:10159

    Article  CAS  Google Scholar 

  51. Avgouropoulos G, Ioannides T, Matralis H (2005) Appl Catal B 56:87

    Article  CAS  Google Scholar 

  52. Tang X, Zhang B, Li Y, Xu Y, Xin Q, Shen W (2005) Appl Catal A 288:116

    Article  CAS  Google Scholar 

  53. Hocevar S, Krasovec UO, Orel B, Arico AS, Kim H (2000) Appl Catal B 28:113

    Article  CAS  Google Scholar 

  54. Martinez-Arias A, Hungria AB, Munuera G, Gamarra D (2006) Appl Catal B 65:207

    Article  CAS  Google Scholar 

  55. Gamarra D, Belver C, Fernandez-Garcia M, Martinez-Arias A (2007) J Am Chem Soc 129:12064

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of Kuwait University Research Administration Grant No. SC02/01 and SC06/06, as well as the excellent technical assistance found at the XRD (GS03/01), other analytical units of SAF (GS01/01), and the Electron Microscopy Unit (EMU) of the Faculty of Science, are highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Bumajdad or M. I. Zaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bumajdad, A., Hasan, M.A., Zaki, M.I. et al. Impacts of CuO x additive on the CO oxidation activity and related surface and bulk properties of a NANO-CeO2 Catalyst. Reac Kinet Mech Cat 99, 345–359 (2010). https://doi.org/10.1007/s11144-010-0151-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-010-0151-9

Keywords

Navigation