Skip to main content
Log in

Enantioselective hydrogenation of (E)-2-methyl-2-butenoic acid over cinchonidine modified Pd catalyst. Effect of the structure of achiral amine additives

  • Published:
Reaction Kinetics and Catalysis Letters Aims and scope Submit manuscript

Abstract

The effect of the structure of the achiral primary amine additive on the enantioselective heterogeneous catalytic hydrogenation of (E)-2-methyl-2-butenoic acid over cinchonidine modified Pd/Al2O3 was studied. It was found that a variety of amines increase the enantioselectivity, which was always accompanied by decrease in the initial rate of the hydrogenations. Based on these results, the participation of the amine additive in the formation of the intermediate complex responsible for enantioselection was suggested. A decrease in the reaction temperature resulted in further increase in the optical purity of the product up to 67%, the highest value reported in the hydrogenation of unsaturated aliphatic acids in this heterogeneous catalytic system so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.-U. Blaser, E. Schmidt (Eds.): Asymmetric Catalysis on Industrial Scale. Challenges, Approaches and Solutions, Wiley-VCH, Weinheim, 2004

    Google Scholar 

  2. T. Ohkuma, M. Kitamura, R. Noyori, in: Catalytic Asymmetric Synthesis, 2nd ed., (Ed.: I. Ojima), Chapt. 1, p 1. Wiley-VCH, Weinheim, 2000.

    Google Scholar 

  3. Recent reviews on chirally modified heterogeneous metal catalysts: a) D.Yu. Murzin, P. Mäki-Arvela, E. Toukoniitty, T. Salmi: Catal. Rev. Sci. Eng., 47, 175 (2005)

    Article  CAS  Google Scholar 

  4. T. Osawa, T. Harada, O. Takayasu: Curr. Org. Chem., 10, 1513 (2006)

    Article  CAS  Google Scholar 

  5. M. Bartók: Curr. Org. Chem., 10, 1533 (2006)

    Article  Google Scholar 

  6. M. Heitbaum, F. Glorius, I. Escher: Angew. Chem. Int. Ed., 45, 4732 (2006)

    Article  CAS  Google Scholar 

  7. T. Mallat, E. Orglmeister, A. Baiker: Chem. Rev., 107, 4863 (2007).

    Article  CAS  Google Scholar 

  8. Gy. Szőllősi: Magy. Kém. Foly., 113, 146 (2007).

    Google Scholar 

  9. Y. Nitta, K. Kobiro: Chem. Lett., 25, 897 (1996).

    Article  Google Scholar 

  10. Y. Nitta: Chem. Lett., 28, 635 (1999)

    Article  Google Scholar 

  11. Y. Nitta: Top. Catal., 13, 179 (2000).

    Article  CAS  Google Scholar 

  12. T. Sugimura, J. Watanabe, T. Okuyama, Y. Nitta: Tetrahedron: Asymmetry, 16, 1573 (2005)

    Article  CAS  Google Scholar 

  13. Y. Nitta, J. Watanabe, T. Okuyama, T. Sugimura: J. Catal., 236, 164 (2005).

    Article  CAS  Google Scholar 

  14. Gy. Szőllősi, B. Hermán, K. Felföldi, F. Fülöp, M. Bartók: J. Mol. Catal. A: Chem., 290, 54 (2008)

    Article  Google Scholar 

  15. Gy. Szőllősi, B. Hermán, K. Felföldi, F. Fülöp, M. Bartók: Adv. Synth. Catal., 350, 2804 (2008).

    Article  Google Scholar 

  16. T.J. Hall, P. Johnston, W.A.H. Vermeer, S.R. Watson, P.B. Wells: Stud. Surf. Sci. Catal., 101, 221 (1996).

    Article  CAS  Google Scholar 

  17. K. Borszeky, T. Mallat, A. Baiker: Catal. Lett., 41, 199 (1996)

    Article  CAS  Google Scholar 

  18. K. Borszeky, T. Mallat, A. Baiker: Tetrahedron: Asymmetry, 8, 3745 (1997)

    Article  CAS  Google Scholar 

  19. K. Borszeky, T. Bürgi, Z. Zhaohui, T. Mallat, A. Baiker: J. Catal., 187, 160 (1999).

    Article  CAS  Google Scholar 

  20. Gy. Szőllősi, S. Niwa, T. Hanaoka, F. Mizukami: J. Mol. Catal. A: Chem., 230, 91 (2005).

    Article  Google Scholar 

  21. R. Bisignani, S. Franceschini, O. Piccolo, A. Vaccari: J. Mol. Catal. A: Chem., 232, 161 (2005).

    Article  CAS  Google Scholar 

  22. I. Kun, B. Török, K. Felföldi, M. Bartók: Appl. Catal. A: Gen., 203, 71 (2000).

    Article  CAS  Google Scholar 

  23. Gy. Szőllősi, S. Niwa, T. Hanaoka, F. Mizukami, M. Bartók: J. Catal., 231, 480 (2005).

    Article  Google Scholar 

  24. B. Hermán, Gy. Szőllősi, F. Fülöp, M. Bartók: Appl. Catal. A: Gen., 331, 39 (2007).

    Article  Google Scholar 

  25. Gy. Szőllősi, E. Szabó, M. Bartók: Adv. Synth. Catal., 349, 405 (2007)

    Article  Google Scholar 

  26. Gy. Szőllősi, T. Varga, K. Felföldi, Sz. Cserényi, M. Bartók: Catal. Commun., 9, 421 (2008)

    Article  Google Scholar 

  27. Gy. Szőllősi, K. Szőri, M. Bartók: J. Catal., 256, 349 (2008)

    Article  Google Scholar 

  28. K. Szőri, Gy. Szőllősi, M. Bartók: New J. Chem., 32, 1354 (2008).

    Article  Google Scholar 

  29. Gy. Szőllősi, K. Balázsik, M. Bartók: Appl. Catal. A: Gen., 319, 193 (2007).

    Article  Google Scholar 

  30. M. Casagrande, S. Franceschini, M. Lenarda, O. Piccolo, A. Vaccari: J. Mol. Catal. A: Chem., 246, 263 (2006).

    Article  CAS  Google Scholar 

  31. V. Frenna, N. Vivona, G. Consiglio, D. Spinelli: J. Chem. Soc., Perkin Trans. II, 1865 (1985)

  32. A. de Roocker, P. de Radzitzky: Bull. Soc. Chim. Belg., 72, 202 (1963)

    Google Scholar 

  33. J. Steigman, D. Sussman: J. Am. Chem. Soc., 89, 6400 (1967)

    Article  CAS  Google Scholar 

  34. E.B.R. Prideaux, F.T. Winfield: J. Chem. Soc., 1587 (1930).

  35. D.M. Meier, A. Urakawa, N. Turrà, H. Rüegger, A. Baiker: J. Phys. Chem. A, 112, 6150 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to György Szőllősi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szőllősi, G., Makra, Z. & Bartók, M. Enantioselective hydrogenation of (E)-2-methyl-2-butenoic acid over cinchonidine modified Pd catalyst. Effect of the structure of achiral amine additives. React Kinet Catal Lett 96, 319–325 (2009). https://doi.org/10.1007/s11144-009-5513-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-009-5513-9

Keywords

Navigation