Skip to main content
Log in

Magnetic System of a Sub-Gigawatt Free-Electron Laser of the Terahertz Range Based on a Kiloampere Beam of Relativistic Electrons

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We consider the project of a sub-gigawatt free-electron laser (FEL) in the THz range based on a high-current electron beam proposed in 2020 by a scientific collaboration team from G. I.Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences (BINP SB RAS, Novosibirsk) and the Institute of Applied Physics of the Russian Academy of Sciences (Nizhny Novgorod). A new generation of linear induction accelerators (LIA) with a kiloampere current level and an energy of up to 10 MeV, which are capable of forming beams with a high current density and low normalized emittance, is developed at the BINP SB RAS and can be used as a source of an electron beam for such a FEL generator. The objective of our research is to develop and create a FEL generator producing pulses of coherent radiation in the THz range with a sub-GW power level and a record-breaking energy content in a pulse of about 10–100 J. Combination of a high current density of the beam and its long pulse duration (about 100 ns) together with a small spread in the longitudinal electron velocities of the beam opens up the possibility of implementing the FEL scheme in two different types of oversized electrodynamic systems. The first is based on a two-mirror Bragg resonator, in which waves are reflected due to the coupling of the traveling and quasi-critical waves on a corrugated surface. In the second type of the electrodynamic system, a quasi-optical resonator based on the Talbot effect is used. According to the theory, the simulation results, and the data of the cold experiments, both schemes make it possible to ensure a stable regime of narrow-band generation of THz radiation under the conditions of significant cavity oversize, i.e., the ratio of the cavity diameter and the radiation wavelength (ϕ/⋋ > 30–40). The main structural elements of the developed section of the FEL generator and their design parameters are discussed within the framework of this article. When developing the magnetic system of this section, we calculated the time dependence of the spatial configurations of pulsed magnetic field in a helix undulator with a period of d = 10 cm and a length of 2 m, as well as in the solenoid of a quasi-homogeneous magnetic field of the same length intended for compression of the beam cross section before its input in the vacuum channel of the FEL section and for consequent transport of the beam inside it. The presented results of modeling and testing of the manufactured elements for the FEL section will become the basis for the design of a high power FEL generator operated in the frequency range from 0.3 to 1.2 THz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.V.Arzhannikov, N. S. Ginzburg, A. M. Malkin, et al., Proc. 44th Int. Conf. Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2019). 1–6 September 2019, Paris, France, Art. no. 5864231. https://doi.org/10.1109/IRMMW-THz.2019.8874573

  2. N.Yu.Peskov, A. V. Arzhannikov, N. S. Ginzburg, et al., Proc. SPIE. V. 11582. 4th Int. Conf. Terahertz and Microwave Radiation: Generation, Detection, and Applications. 24–26 August 2020, Tomsk, Russia, 1158207. https://doi.org/10.1117/12.2579554

  3. P. V. Logachev, G. I. Kuznetsov, A. A.Korepanov, et al., Instrum. Exp. Tech., No. 6, 42–49 (2013). https://doi.org/10.7868/S0032816213060220

  4. D. A. Nikiforov, M. F. Blinov, V.V. Fedorov, et al., Phys. Part. Nuclei Lett., 17, 197–203 (2020). https://doi.org/https://doi.org/10.1134/S1547477120020156

    Article  ADS  Google Scholar 

  5. E. S. Sandalov, S. L. Sinitsky, D. I. Skovorodin, et al., in: 2021 IEEE Int. Conf. Plasma Science, September 12–16, 2021, Lake Tahoe, USA, 9588436. https://doi.org/10.1109/ICOPS36761.2021.9588436

  6. W.Faries, K.A.Gehring, P. L.Richards, and Y.R. Shen, Phys. Rev., 180, No. 2, 363–365 (1969). https://doi.org/https://doi.org/10.1103/PhysRev.180.363

    Article  ADS  Google Scholar 

  7. J.R. Morris and Y.R. Shen, Opt. Commun., 3, No. 2, 81–84 (1971). https://doi.org/https://doi.org/10.1016/0030-4018(71)90182-9

    Article  ADS  Google Scholar 

  8. C. Fattinger and D.Grischkowsky, Appl. Phys. Lett., 53, 1480–1482 (1988). https://doi.org/https://doi.org/10.1063/1.99971

    Article  ADS  Google Scholar 

  9. D. Grischkowsky, S.Keiding, M.Exter, and Ch. Fattinger, J. Opt. Soc. Am. B, 7, 2006–2015 (1990).

    Article  ADS  Google Scholar 

  10. P. Shumyatsky and R.R.Alfano, J. Biomed. Opt., 16, No. 3, 033001 (2011). https://doi.org/https://doi.org/10.1117/1.3554742

    Article  ADS  Google Scholar 

  11. Y. Lee, Principles of Terahertz Science and Technology (Lecture Notes in Physics), Springer, New York (2009).

    Google Scholar 

  12. P.Tan, J. Huang, K. Liu, et al., Sci. China Inf. Sci., 55, 1–15 (2012). https://doi.org/https://doi.org/10.1007/s11432-011-4515-1

    Article  ADS  Google Scholar 

  13. P.U.Jepsen, D.G.Cooke, and M.Koch, Laser Photonics Rev., 5, 124–66 (2011). https://doi.org/https://doi.org/10.1002/lpor.201000011

    Article  ADS  Google Scholar 

  14. P. C. M. Planken, C. E.Rijmenam, and R.N. Schouten, Semicond. Sci. Technol., 20, No. 7, S121–S127 (2005). https://doi.org/https://doi.org/10.1088/0268-1242/20/7/001

    Article  Google Scholar 

  15. K. B. Cooper, R. J.Dengler, N. Llombart, et al., IEEE Trans. Terahertz Sci. Technol., 1, No. 1, 169–182 (2011). https://doi.org/https://doi.org/10.1109/TTHZ.2011.2159556

    Article  ADS  Google Scholar 

  16. T. Kampfrath, K.Tanaka, and K. A. Nelson, Nat. Photonics, 7, 680–690 (2013). https://doi.org/https://doi.org/10.1038/nphoton.2013.184

    Article  ADS  Google Scholar 

  17. B. L.Yu, Yang Y., Zeng F., et al., Appl. Phys. Lett., 86, No. 10, 101108 (2005). https://doi.org/10.1063/1.1882759

  18. M. Thumm, J. Infrared Millim. Terahertz Waves, 41, 1–140 (2020). https://doi.org/https://doi.org/10.1007/s10762-019-00631-y

    Article  Google Scholar 

  19. R. A. Lewis, J. Phys. D, Appl. Phys., 47, 374001 (2014). https://doi.org/https://doi.org/10.1088/0022-3727/47/37/374001

    Article  Google Scholar 

  20. G.P. Gallerano and S.Biedron, 26th Int. Free Electron Laser Conf. August, 29—September, 3 2004, Trieste, Italy, p. 216–221.

  21. M.Yu.Glyavin, A.G. Luchinin, A.A. Bogdashov, et al. Radiophys. Quantum Electron., 56, Nos. 8–9, 497–507 (2014). https://doi.org/https://doi.org/10.1007/s11141-014-9454-4

    Article  ADS  Google Scholar 

  22. A. V. Arzhannikov and I. V.Timofeev, Plasma Phys. Control. Fusion 54, 105004 (2012). https://doi.org/https://doi.org/10.1088/0741- 3335/54/10/105004

    Article  ADS  Google Scholar 

  23. A. V. Arzhannikov, I. A. Ivanov, A.A.Kasatov, et al., Plasma Phys. Control. Fusion, 62, No. 4, 045002 (2020). https://doi.org/10.1088/1361-6587/ab72e3

  24. I.V. Timofeev, V.V.Annenkov, and A.V.Arzhannikov, Phys. Plasmas, 22, 113109 (2015). https://doi.org/https://doi.org/10.1063/1.4935890

    Article  ADS  Google Scholar 

  25. D.A. Samtsov, A.V.Arzhannikov, S. L. Sinitsky, et al., IEEE Trans. Plasma Sci., 49, No. 11, 3371–3376 (2021). https://doi.org/https://doi.org/10.1109/TPS.2021.3108880

    Article  ADS  Google Scholar 

  26. A.V.Arzhannikov, S. L. Sinitsky, S. S.Popov, et al., IEEE Trans. Plasma Sci., 50, No. 8, 2348–2363 (2022). https://doi.org/10.1109/TPS.2022.3183629

  27. A.Arzhannikov, V.Annenkov, I. Ivanov, et al., J. Phys. Conf. Series, 1647, No. 1, 012010 (2020). https://doi.org/https://doi.org/10.1088/1742-6596/1647/1/012010

    Article  Google Scholar 

  28. G.P. Gallerano, A.Doria, E.Giovenale, et al., Terahertz Sci. Technol., 7, No. 4, 160–171 (2014). https://doi.org/10.11906/TST.160-171.2014.12.15

  29. Y. U. Jeong, B. C. Lee, S. K. Kim, et al., Nucl. Instrum. Methods Phys. Res. A, 475, Nos. 1–3, 47–50 (2001). https://doi.org/https://doi.org/10.1016/S0168-9002(01)01533-9

    Article  ADS  Google Scholar 

  30. J. Byrd, M.W.P. Leemans, A. Loftsdottir, et al., Phys. Rev. Lett., 89, 224801 (2002). https://doi.org/https://doi.org/10.1103/PhysRevLett.89.224801

    Article  ADS  Google Scholar 

  31. G. L. Carr, M. C. Martin, W.R. McKinney, et al., Nature, 420, 153–156 (2002). https://doi.org/https://doi.org/10.1038/nature01175

    Article  ADS  Google Scholar 

  32. A. Gover, A. Faingersh, A. Eliran, et al., Nucl. Instrum. Methods Phys. Res. A, 528, 23–27 (2004). https://doi.org/https://doi.org/10.1016/j.nima.2004.04.011

    Article  ADS  Google Scholar 

  33. A. F. G.Van der Meer, Nucl. Instrum. Methods Phys. Res. A, 528, 8–14 (2004). https://doi.org/https://doi.org/10.1016/j.nima.2004.04.008

    Article  ADS  Google Scholar 

  34. O.A. Shevchenko, V. S.Arbuzov, N.A.Vinokurov, et al., Phys. Procedia, 84, 13–18 (2016). https://doi.org/10.1016/j.phpro.2016.11.004

  35. G. N. Kulipanov, E.G.Bagryanskaya, E.N.Chesnokov, et al., IEEE Trans. Terahertz Sci. Technol., 5, No. 5, 798–809 (2015). https://doi.org/10.1109/TTHZ.2015.2453121

  36. D. A. Nikiforov, A. V.Petrenko, S. L. Sinitsky, et al., J. Instrum., 16, P11024 (2021). https://doi.org/https://doi.org/10.1088/1748-0221/16/11/P11024

    Article  Google Scholar 

  37. D. A. Nikiforov, A. V. Ivanov, S. L. Sinitsky, et al., Siberian J. Phys., 17, No. 4, 31–44 (2022). https://doi.org/10.25205/2541-9447-2022-17-4-31-44

  38. E. S. Sandalov, S. L. Sinitsky, D.A.Nikiforov, et al., Proc. 46th Int. Conf. Infrared, Millimeter and Terahertz Waves. August 29—September 3, 2021, Chengdu, China, 9567073. https://doi.org/10.1109/IRMMW-THz50926.2021.9567073

  39. E. S. Sandalov, S. L. Sinitsky, D. I. Skovorodin, et al., Siberian J. Phys., 17, No. 2, 16–29 (2022). https://doi.org/10.25205/2541-9447-2022-17-2-16-29

  40. E. S. Sandalov, S. L. Sinitsky, A.V.Arzhannikov, et al., Bull. Rus. Acad. Sci. Phys., 87, No. 5, 573–579 (2023). https://doi.org/10.3103/S1062873822701763

  41. A. V. Arzhannikov, P. A. Bak, V. I. Belousov, et al., Radiophys. Quantum Electron., 64, No. 11, 814–824 (2022). https://doi.org/https://doi.org/10.1007/s11141-022-10180-5

    Article  ADS  Google Scholar 

  42. N.Yu.Peskov, A. V. Arzhannikov, V. I. Belousov, et al, Proc. XI All-Russia Scientific-Technical Conf. “Microwave Electronics and Microelectronics,” May 30—June 2, 2022, St. Petersburg, Russia, pp. 207–211.

  43. A.K.Kaminsky, É.A. Perel’stein, S.N. Sedykh, et al., Tech. Phys. Lett., 36, No. 3, 211–215 (2010). https://doi.org/10.1134/S1063785010030053

  44. N.Yu.Peskov, N. S. Ginzburg, A. K. Kaminsky, et al., Proc. 41th Int. Conf. Infrared, Millimeter and Terahertz Waves. September 25–30, 2016, Copenhagen, Denmark, 7758360. https://doi.org/10.1109/IRMMW-THz.2016.7758360

  45. N.Yu.Peskov, N. S. Ginzburg, A. K. Kaminsky, et al., Radiophys. Quantum Electron., 63, No. 12, 931–975 (2021). https://doi.org/https://doi.org/10.1007/s11141-021-10105-8

    Article  ADS  Google Scholar 

  46. N. S. Ginzburg and N.Yu.Peskov, Zh. Tekh. Fiz, 58, No. 5, 859–869 (1988).

    Google Scholar 

  47. N.Yu.Peskov, High-Power Free-Electron Masers with One- and Two-Dimensional Distributed Feedback, Doct. Sci. Theses, Nizhny Novgorod (2011).

  48. E. S. Sandalov, S. L. Sinitsky, D. I. Skovorodin, et al., IEEE Trans. Plasma Sci., 49, No. 9, 2737–2749 (2021). https://doi.org/https://doi.org/10.1109/TPS.2021.3105661

    Article  ADS  Google Scholar 

  49. A.A. Kaminsky, A.K.Kaminsky, S. B.Rubin, et al., Part. Accel., 33, 189–194 (1990).

  50. M. E. Conde and G.Bekefi, Phys. Rev. Lett., 67, No. 22, 3082–3085 (1991). https://doi.org/https://doi.org/10.1103/PhysRevLett.67.3082

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Sandalov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 66, Nos. 7–8, pp. 538–554, July–August 2023. Russian https://doi.org/10.52452/00213462_2023_66_07_538

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandalov, E.S., Sinitsky, S.L., Arzhannikov, A.V. et al. Magnetic System of a Sub-Gigawatt Free-Electron Laser of the Terahertz Range Based on a Kiloampere Beam of Relativistic Electrons. Radiophys Quantum El (2024). https://doi.org/10.1007/s11141-024-10323-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11141-024-10323-w

Navigation