Skip to main content
Log in

Influence of High-Intensity Terahertz Radiation on the Differentiation of Human Neural Progenitor Cells

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We present the results of studying the impact of high-intensity terahertz pulses on the differentiation of induced human neural progenitor cells (drNPCs). The differentiation was estimated using the immunocytochemical analysis, i.e., the marker of the undifferentiated cells (SOX2) and the markers of the neuronal (β-III-tubulin and MAP2b) and glial (GFAP) phenotype. The cell exposure was performed by terahertz pulses with an intensity of 21 GW/cm2 and an electric field of 2.8 MV/cm for 30 min. As a result of exposure, the phenotype of induced neural progenitor cells did not differ from that of unexposed cells and the appearance of mature neurons or glial cells was not detected. The ability of the terahertz radiation to cause effects in neural cell cultures apparently requires further studies for higher exposure intensity or duration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. V. Il’ina, D. S. Sitnikov, and M. B. Agranat, High Temp., 56, No. 5, 789–810 (2018). https://doi.org/10.1134/S0018151X18050127

  2. O.P.Cherkasova, D. S. Serdyukov, A. S.Ratushnyak, et al., Opt. Spectrosc., 128, No. 6, 855–866 (2020). https://doi.org/10.1134/S0030400X20060041

  3. O.P.Cherkasova,D. S. Serdyukov, E. F.Nemova, et al., J. Biomed. Opt., 26, No. 09, 090902 (2021). https://doi.org/10.1117/1.jbo.26.9.090902

  4. A. I. Nikitkina, P. Y. Bikmulina, E.R. Gafarova, et al., J. Biomed. Opt., 26, No. 4, 043005 (2021). https://doi.org/https://doi.org/10.1117/1.jbo.26.4.043005

    Article  ADS  Google Scholar 

  5. N.P. Bondar, I. L.Kovalenko, D. F.Avgustinovich, et al., Bull. Exp. Biol. Med. 145, No. 4, 401–405 (2008). https://doi.org/10.1007/s10517-008-0102-x

  6. V.F.Kirichuk, N.V. Efimova, and E.V.Andronov, Bull. Exp. Biol. Med., 148, No. 5, 746–749 (2009). https://doi.org/https://doi.org/10.1007/s10517-010-0807-5

    Article  Google Scholar 

  7. Yu.Ol’shevskaya, A. S.Kozlov, A. K.Petrov, et al., I. P. Pavlov Zh. Vyssh. Nerv. Deyat., 59, No. 3, 353–359 (2009).

  8. N. Bourne, R.H.Clothier, M.DÁrienzo, and P. Harrison, Altern. Lab. Anim., 36, No. 6, 667–684 (2008). https://doi.org/10.1177/026119290803600610

  9. T.Tachizaki, R. Sakaguchi, S.Terada, et al., Opt. Lett., 45, No. 21, 6078 (2020). https://doi.org/10.1364/OL.402815

  10. J.-E.Ahlfors, A.Azimi, R. El-Ayoubi, et al., Stem Cell Res. Ther., 10, No. 1, 166 (2019). https://doi.org/https://doi.org/10.1186/s13287-019-1255-4

    Article  Google Scholar 

  11. V.P.Baklaushev, O.V.Durov, V.A.Kalsin, et al., World J. Stem Cells, 13, No. 5, 452–469 (2021). https://doi.org/10.4252/wjsc.v13.i5.452

  12. K.H.Yang, P. L.Richards, and Y.R. Shen, Appl. Phys. Lett., 19, No. 9, 320–323 (1971). https://doi.org/https://doi.org/10.1063/1.1653935

    Article  ADS  Google Scholar 

  13. G. Krizs´an, Z. Tibai, G.T´oth, et al., Opt. Express, 30, No. 3, 4434–4443 (2022). https://doi.org/10.1364/oe.440883

  14. X.Wu, J.Ma, B. Zhang, et al., Opt. Express, 26, No. 6, 7107–7116 (2018). https://doi.org/https://doi.org/10.1364/OE.26.007107

    Article  ADS  Google Scholar 

  15. H.Hirori, A.Doi, F.Blanchard, and K.Tanaka, Appl. Phys. Lett., 98, No. 9, 091106 (2011). https://doi.org/https://doi.org/10.1063/1.3560062

    Article  ADS  Google Scholar 

  16. M. Shalaby and C.P.Hauri, Nat. Commun., 6, No. 6, 6 (2015). https://doi.org/https://doi.org/10.1038/ncomms6976

    Article  Google Scholar 

  17. P. Liu, X. Zhang, C.Yan, et al., Appl. Phys. Lett., 108, No. 1, 011104 (2016). https://doi.org/10.1063/1.4939456

  18. A. Schneider, M.Neis, M. Stillhart, et al., J. Opt. Soc. Am. B, 23, No. 9, 1822–1835 (2006). https://doi.org/https://doi.org/10.1364/JOSAB.23.001822

    Article  ADS  Google Scholar 

  19. C. Vicario, M. Jazbinsek, A. V.Ovchinnikov, et al., Opt. Express, 23, No. 4, 4573–4580 (2015). https://doi.org/10.1364/OE.23.004573

  20. A. V.Ovchinnikov, O. V.Chefonov, D. S. Sitnikov, et al., Quantum Electron., 48, No. 6, 554–558 (2018). 101070/QEL_16681

  21. D. S. Sitnikov, S.A.Romashevskiy, A.V. Ovchinnikov, et al., Laser Phys. Lett., 16, No. 11, 115302 (2019). https://doi.org/https://doi.org/10.1088/1612-202X/ab4d56

    Article  ADS  Google Scholar 

  22. D. S. Sitnikov, I.V. Ilina, V. A.Revkova, et al., High Temp., 58, No. 1, 36–43 (2020). https://doi.org/10.1134/S0018151X20010174

  23. D.S.Sitnikov, I.V. Ilina, and A.A. Pronkin, Opt. Eng., 59, No. 6, 061613 (2020). https://doi.org/https://doi.org/10.1117/1.OE.59.6.061613

    Article  ADS  Google Scholar 

  24. L. V. Titova, A.K.Ayesheshim, A. Golubov, et al., Sci. Rep., 3, 2363 (2013). https://doi.org/https://doi.org/10.1038/srep02363

    Article  Google Scholar 

  25. L. V. Titova, A.K.Ayesheshim, A. Golubov, et al., Biomed. Opt. Express, 4, No. 4, 559–568 (2013). https://doi.org/https://doi.org/10.1364/BOE.4.000559

    Article  Google Scholar 

  26. D. S. Sitnikov, I.V. Il’ina, S. A. Gurova, et al., Bull. Russ. Acad. Sci. Phys, 84, No. 11, 1370–1374 (2020). https://doi.org/10.3103/1062873820110246

  27. D.S.Sitnikov, V.A.Revkova, I.V. Ilina, et al., J. Biophoton., 16, No. 1, e202200212 (2023). https://doi.org/https://doi.org/10.1002/jbio.202200212

    Article  Google Scholar 

  28. D. S. Sitnikov, A.A.Pronkin, I.V. Ilina, et al., Sci. Rep., 11, 17916 (2021). https://doi.org/https://doi.org/10.1038/s41598-021-96898-0

    Article  ADS  Google Scholar 

  29. D. Sitnikov, V.Revkova, I. Ilina, et al., Int. J. Mol. Sci., 24, No. 7, 6558 (2023). https://doi.org/https://doi.org/10.3390/ijms24076558

    Article  Google Scholar 

  30. V.P. Baklaushev, V.G.Bogush, V.A.Kalsin, et al., Sci. Rep., 9, No. 1, 3161 (2019). https://doi.org/10.1038/s41598-019-39341-9

  31. V. A. Revkova, K. V. Sidoruk, V. A.Kalsin, et al., ACS Omega, 6, No. 23, 15264–15273 (2021). https://doi.org/10.1021/acsomega.1c01576

  32. C. M. Hough, D. N. Purschke, C.Bell, et al., Biomed. Opt. Express, 12, No. 9, 5812–5828 (2021). https://doi.org/10.1364/BOE.433240

  33. X. Zhao, M. Zhang, Y. Liu, et al., Science, 24, No. 12, 103485 (2021). https://doi.org/https://doi.org/10.1016/j.isci.2021.103485

    Article  Google Scholar 

  34. S. Ma, Z. Li, S. Gong, et al., Brain Sci., 13, No. 4, 686 (2023). https://doi.org/https://doi.org/10.3390/brainsci13040686

    Article  Google Scholar 

  35. S. Ma, Z. Li, S. Gong, et al., Front. Bioeng. Biotechnol., 11, 1147694 (2023). https://doi.org/https://doi.org/10.3389/fbioe.2023.1147684

    Article  Google Scholar 

  36. J.-E.Ahlfors and R.Elayoubi, “Methods for reprogramming cells and uses thereof,” Canada Patent No.CA-2779310-A1 (2011).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Sitnikov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 66, Nos. 7–8, pp. 683–696, April 2023. Russian https://doi.org/10.52452/00213462_2023_66_07_683

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sitnikov, D.S., Revkova, V.A., Ilina, I.V. et al. Influence of High-Intensity Terahertz Radiation on the Differentiation of Human Neural Progenitor Cells. Radiophys Quantum El (2024). https://doi.org/10.1007/s11141-024-10321-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11141-024-10321-y

Navigation