Skip to main content
Log in

Analysis of Generation Regimes in a Technological Gyrotron with a Magnetically Shielded System in the Angel Software Environment

  • Published:
Radiophysics and Quantum Electronics Aims and scope

The paper is devoted to a comparison of the results of an experimental study of a 28 GHz/25 kW gyrotron with a magnetically shielded system and the results of calculating the electron–wave interaction with the use of the ANGEL software code on the basis of a self-consistent model with an unfixed radio-frequency field structure. The good agreement between the results confirms the validity of using the developed code for creation of new gyrotrons. Comparison of various experimental data with the calculation results for the electron–wave interaction as well as for electron optics makes possible implicit reevaluation of the actual values of some important gyrotron parameters (the electron pitch factor, transverse velocity spread, etc.).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Flyagin, A. V. Gaponov, M. I.Petelin, and V. K.Yulpatov, IEEE Trans. Microwave Theory Tech., 25, No. 6, 514–521 (1977). https://doi.org/https://doi.org/10.1109/TMTT.1977.1129149

    Article  ADS  Google Scholar 

  2. https://www.3ds.com/ru/produkty-i-uslugi/simulia/produkty/cst-studio-suite/

  3. V. L. Bratman, M. A. Moiseev, M. I.Petelin, and R. É. Érm, Radiophys. Quantum Electron., 16, No. 4, 474–480 (1973). https://doi.org/https://doi.org/10.1007/BF01030898

    Article  ADS  Google Scholar 

  4. N. S. Ginzburg, N.A. Zavol’skii, G. S.Nusinovich, and A. S. Sergeev, Radiophys. Quantum Electron., 29, No. 1, 89–97 (1986). https://doi.org/10.1007/BF01034008

  5. E. Borie and O.Dumbrajs, Int. J. Electron., 60, No. 2, 143–154 (1986). https://doi.org/https://doi.org/10.1080/00207218608920768

    Article  Google Scholar 

  6. M. Botton, T. M.Antonsen, B. Levush, et al., IEEE Trans. Plasma Sci., 26, No. 3, 882–892 (1998). https://doi.org/https://doi.org/10.1109/27.700860

    Article  ADS  Google Scholar 

  7. S. Sabchevski, T. Idehara, T. Saito, et al., “Physical Models and Computer Codes of the GYROSIM (GYROtron SIMulation) Software Package,” Tech. Rep. FIR FU-99, Research Center for Development of Far-Infrared Region, University of Fukui, Fukui (2010).

  8. K. A.Avramides, I. Gr.Pagonakis, C.T. Iatrou, and J. L.Vomvoridis, EPJ Web Conf ., 32, 04016 (2012). https://doi.org/10.1051/epjconf/20123204016

  9. S.V.Kolosov and I. E. Zaitseva, SVCh Elektronika, No. 2, 46–48 (2017).

    Google Scholar 

  10. N. A. Zavolsky, V.E. Zapevalov, and M. A. Moiseev, Radiophys. Quantum Electron., 44, No. 4, 318–325 (2001). https://doi.org/https://doi.org/10.1023/A:1010422204317

    Article  Google Scholar 

  11. M. D. Proyavin, M.V.Morozkin, V. N. Manuilov, et al., IEEE Electron. Device Lett., 44, No. 1, 148–151 (2023). https://doi.org/https://doi.org/10.1109/LED.2022.3222169

    Article  ADS  Google Scholar 

  12. O.P. Plankin and E. S. Semenov, Vestnik NSU, Series: Physics, 8, No. 2, 44–54 (2013). https://doi.org/10.54362/1818-7919-2013-8-2-44-54

  13. S.N.Vlasov, G.M. Zhislin, I.M.Orlova, et al., Radiophys. Quantum Electron., 12, No. 8, 972–978 (1969). https://doi.org/10.1007/BF01031202

  14. M. D. Proyavin, V.N.Manuilov, I. G. Gachev, et al., Instrum. Exp. Tech., 63, No. 1, 97–100 (2020). https://doi.org/https://doi.org/10.1134/S0020441220010078

    Article  Google Scholar 

  15. M. V. Morozkin, M.D.Proyavin, V. N. Manuiov, and M.Yu. Glyavin, Radiophys. Quantum Electron., 63, Nos. 5–6, 413–421 (2020). https://doi.org/https://doi.org/10.1007/s11141-021-10066-y

    Article  ADS  Google Scholar 

  16. T. Kalvas, O.Tarvainen, T.Ropponen, et al., Rev. Sci. Instrum., 81, No. 2, 02B703 (2010). https://doi.org/10.1063/1.3258608

  17. V. E. Zapevalov, A. S. Zuev, V.V.Parshin, et al., Radiophys. Quantum Electron., 64, No. 4, 240–250 (2021). https://doi.org/10.1007/s11141-021-10127-2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Proyavin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 66, Nos. 7–8, pp. 645–663, July–August 2023. Russian https://doi.org/10.52452/00213462_2023_66_07_645

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenov, E.S., Proyavin, M.D., Morozkin, M.V. et al. Analysis of Generation Regimes in a Technological Gyrotron with a Magnetically Shielded System in the Angel Software Environment. Radiophys Quantum El (2024). https://doi.org/10.1007/s11141-024-10318-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11141-024-10318-7

Navigation