Skip to main content
Log in

Pulsed Micro-Undulator for Terahertz and X-Ray Free-Electron Lasers

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We propose and test experimentally the design of a planar micro-undulator, which allows ensuring a simple profile of the undulator parameter with a value of about unity at a period of 1 mm, as well as the possibility to operate in a regime with a repetition frequency of tens of hertz. Along with small-size sources of high-density beams of accelerated electrons, such as the photo-injection accelerator or the plasma wakefield accelerator, this micro-undulator can be used to make small-size sources of the terahertz and X-ray radiation. It is shown that the Joule heating inhibits the further decrease in the period value. Analytical estimates of the undulator parameter agree well with both the results of numerical simulations and the results of experimental tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.P. Freund and T.M.Antonsen, Principles of Free-Electron Lasers, Chapman and Hall, London (1996).

    Google Scholar 

  2. C.Pellegrini, A. Marinelli, and S.Reiche, Rev. Mod. Phys., 88, No. 1, 015006 (2016). https://doi.org/10.1103/RevModPhys.88.015006

    Article  ADS  Google Scholar 

  3. A. Marinelli, J. MacArthur, P.Emma, et al., Appl. Phys. Lett., 111, No. 15, 151101 (2017). https://doi.org/10.1063/1.4990716

  4. N. S. Ginzburg, Pis’ma Zh. Tekh. Fiz., 14, No. 5, 440–443 (1988).

    Google Scholar 

  5. R. Bonifacio, B. W. J. McNeil, and P.Pierini, Phys. Rev. A, 40, No. 8, 4467–4475 (1989). https://doi.org/10.1103/PhysRevA.40.4467

    Article  ADS  Google Scholar 

  6. N. S. Ginzburg, A.A. Golovanov, I.V. Zotova, et al., JETP, 119, 632–640 (2014). https://doi.org/10.1134/S1063776114100021

    Article  ADS  Google Scholar 

  7. N. Balal, I.V. Bandurkin, V. L. Bratman, et al., Appl. Phys. Lett., 107, No. 16, 163505 (2015). https://doi.org/10.1063/1.4934495

    Article  ADS  Google Scholar 

  8. A. Gover, R. Ianconescu, A. Friedman, et al., Rev. Mod. Phys., 91, No. 3, 035003 (2019). https://doi.org/10.1103/RevModPhys.91.035003

    Article  ADS  Google Scholar 

  9. V. L. Bratman, Yu. Lurie, and Yu. S.Oparina, Nucl. Instrum. Meth. Phys. Res. A, 976, 164268 (2020). https://doi.org/10.1016/j.nima.2020.164268

    Article  Google Scholar 

  10. T.Rao and D. H. Dowell, https://arxiv.org/abs/1403.7539

  11. F. Stephan, C.H. Boulware, M.Krasilnikov, et al., Phys. Rev. ST Accel. Beams, 13, No. 2, 020704 (2010). https://doi.org/10.1103/PhysRevSTAB.13.020704

  12. L. Faillace, R. Agustsson, M. Behtouei, et al., Phys. Rev. Accel. Beams, 25, No. 6, 063401 (2022). https://doi.org/10.1103/PhysRevAccelBeams.25.063401

    Article  ADS  Google Scholar 

  13. E. Gschwendtner and P. Muggli, Nat. Rev. Phys., 1, No. 4, 246–248 (2019). https://doi.org/10.1038/s42254-019-0049-z

    Article  Google Scholar 

  14. W.Wang, K. Feng, L. Ke, et al., Nature, 595, No. 7868, 516–520 (2021). https://doi.org/10.1038/s41586-021-03678-x

    Article  ADS  Google Scholar 

  15. A. A.Varfolomeev, A. S.Khlebnikov, S. N. Ivanchenkov, et al., Nucl. Instrum. Meth. Phys. Res. A, 331, Nos. 1–3, 745–747 (1993). https://doi.org/10.1016/0168-9002(93)90149-C

    Article  ADS  Google Scholar 

  16. N. Balal, I.V. Bandurkin, V. L. Bratman, and A.E. Fedotov, Phys. Rev. Accel. Beams, 20, No. 12, 122401 (2017). https://doi.org/10.1103/PhysRevAccelBeams.20.122401

    Article  ADS  Google Scholar 

  17. N. Balal, V. Bratman, and E.Magory, Nucl. Instrum. Meth. Phys. Res. A, 971, 163895 (2020). https://doi.org/10.1016/j.nima.2020.163895

    Article  Google Scholar 

  18. S. G.Rykovanov, C. B. Schroeder, E. Esarey, et al., Phys. Rev. Lett., 114, No. 14, 145003 (2015). https://doi.org/10.1103/PhysRevLett.114.145003

    Article  ADS  Google Scholar 

  19. S.Tantawi, M. Shumail, J. Neilson, et al., Phys. Rev. Lett., 112, No. 16, 164802 (2014). https://doi.org/10.1103/PhysRevLett.112.164802

    Article  ADS  Google Scholar 

  20. S. V.Kuzikov, A. V. Savilov, and A.A.Vikharev, Appl. Phys. Lett., 105, No. 3, 033504 (2014). https://doi.org/10.1063/1.4890586

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Bandurkin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 66, Nos. 7–8, pp. 585–594, July–August 2023. Russian DOI: https://doi.org/10.52452/00213462_2023_66_07_585

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandurkin, I.V., Loginov, P.V., Peskov, N.Y. et al. Pulsed Micro-Undulator for Terahertz and X-Ray Free-Electron Lasers. Radiophys Quantum El (2024). https://doi.org/10.1007/s11141-024-10313-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11141-024-10313-y

Navigation