Skip to main content
Log in

High-Power Spatially Extended Free-Electron Masers with Three-Dimensional Distributed Feedback

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We study the possibility of using Bragg resonators that implement a three-dimensional distributed feedback mechanism ensuring synchronization of radiation and mode selection under conditions of substantial oversize in three spatial coordinates. To describe the electron–wave interaction in devices of this type, a three-dimensional spatiotemporal averaged model was developed within the framework of the coupled wave approach. On this basis, a planar free-electron maser (FEM) driven by a full-scale electron beam of a sheet configuration with a particle energy of 1 MeV, a current of up to 140 kA, and a cross section of about 1 × 140 cm, which is formed using a high-current accelerating complex U-2 (BINP RAS), was simulated. The possibility of achieving a stable narrow-band oscillation regime in FEMs with a multi-gigawatt power level in the W band with transverse sizes of the proposed resonators from tens to hundreds of radiation wavelengths is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.G.Litvak, G.G.Denisov, and M.Yu.Glyavin, IEEE J. Microwaves, 1, 260–268 (2021). https://doi.org/10.1109/JMW.2020.3030917

    Article  Google Scholar 

  2. M. K.A. Thumm, G. G. Denisov, K. Sakamoto, and M. Q.Tran, Nucl. Fusion, 59, No. 7, 073001 (2019). https://doi.org/10.1088/1741-4326/ab2005

    Article  ADS  Google Scholar 

  3. G.S.Nusinovich, M.K.A.Thumm, and M. I. Petelin, J. Infrared Millim. Terahertz Waves, 35, 325–381 (2014). https://doi.org/10.1007/s10762-014-0050-7

    Article  Google Scholar 

  4. M.Yu.Glyavin, A.G. Luchinin, and G.Yu. Golubiatnikov, Phys. Rev. Lett., 100, 015101 (2008). https://doi.org/10.1103/PhysRevLett.100.015101

    Article  ADS  Google Scholar 

  5. V. L. Bratman, Yu.K.Kalynov, and V. N. Manuilov, Phys. Rev. Lett., 102, 245101 (2009). https://doi.org/10.1103/PhysRevLett.102.245101

    Article  ADS  Google Scholar 

  6. A.V.Arzhannikov and S. L. Sinitsky, Kiloampere Electron Beams for Vaccumm Oscillation Pumping in Plasmas [in Russian], Publishing and Printing Center of the Novisibirsk State University (2016).

  7. A.V.Arzhannikov, N. S. Ginzburg, P.V. Kalinin, et al., Phys. Rev. Lett., 117, No. 11, 114801 (2016). https://doi.org/10.1103/PhysRevLett.117.114801

    Article  ADS  Google Scholar 

  8. N. S. Ginzburg, N.Yu.Peskov, and A. S. Sergeev, Pis’ma Zh. Tekh. Fiz ., 18, No. 9, 23–28 (1992).

    Google Scholar 

  9. N. S. Ginzburg, N.Yu.Peskov, A. S. Sergeev, et al., Izv. VUZ Appl. Nonlin. Dyn., 28, No. 6, 575–632 (2020). https://doi.org/10.18500/0869-6632-2020-28-6-575-632

  10. N.Yu.Peskov, E. D. Egorova, A. S. Sergeev, and I. M.Tsarkov, Tech. Phys. Lett., 49, No. 4, 57–61 (2023). https://doi.org/10.21883/TPL.2023.04.55880.19375

  11. N. S. Ginzburg, V.Yu. Zaslavsky, I.V. Zotova, et al., JETP Lett., 91, No. 6, 266–270 (2010). https://doi.org/10.1134/S0021364010060020

    Article  ADS  Google Scholar 

  12. N.Yu.Peskov, M. S. Ginzburg, I. I. Golubev, et al., Appl. Phys. Lett., 116, 213505 (2020). https://doi.org/10.1063/5.0006047

    Article  ADS  Google Scholar 

  13. N. F.Kovalev, I. M. Orlova, and M. I.Petelin, Radiophys. Quantum Electron., 11, No. 5, 449–450 (1968). https://doi.org/10.1007/BF01034380

    Article  ADS  Google Scholar 

  14. H.Kogelnik and C.V. Shank, J. Appl. Phys., 43, 2327–2335 (1972). https://doi.org/10.1063/1.1661499

    Article  ADS  Google Scholar 

  15. A.Yariv, Quantum Electronics, John Wiley and Sons Inc., New York (1975).

    Google Scholar 

  16. N. S. Ginzburg and N.Yu.Peskov, Phys. Rev. ST Accel. Beams, 16, 090701 (2013). https://doi.org/10.1103/PhysRevSTAB.16.090701

    Article  ADS  Google Scholar 

  17. N. S. Ginzburg, N.A. Zavol’sky, G. S.Nusinovich, and A. S. Sergeev, Radiophys. Quantum Electron., 29, No. 1, 89–97 (1986). https://doi.org/10.1007/BF01034008

  18. J. Benford, J. Swegle, and E. Shamiloglu, High Power Microwaves, Taylor & Francis, Boca Raton (2007).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yu. Peskov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 66, Nos. 7–8, pp. 575–584, July–August 2023. Russian DOI: https://doi.org/10.52452/00213462_2023_66_07_575

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peskov, N.Y., Egorova, E.D., Ginzburg, N.S. et al. High-Power Spatially Extended Free-Electron Masers with Three-Dimensional Distributed Feedback. Radiophys Quantum El (2024). https://doi.org/10.1007/s11141-024-10312-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11141-024-10312-z

Navigation