Skip to main content
Log in

Design and Testing of the Photogun Resonator and Biperiodic Accelerating Structure with Traveling Wave for the Photoinjector at the IAP RAS

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We present the results of studies aimed at creation of accelerating structures for a photoinjector accelerator that is currently under construction at the IAP RAS. Based on the general theory of coupled oscillators, a simple method for diagnosing the resonant properties of two-cell accelerating structures is given. Electrodynamic measurements of the manufactured photogun at a low power level confirm the ability to achieve the required acceleration gradient, although they show quite a notable difference between its resonant properties and the design. These measurements are in good agreement with analytical estimates and numerical simulations. The project of an additional accelerating structure designed to further accelerate the photoinjector electron bunches up to the energy providing their efficient injection into a wakefield plasma accelerator is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1 T.Rao and D.H.Dowell, An Engineering Guide to Photoinjectors, arXiv preprint arXiv:1403.7539 (2014). https://doi.org/10.48550/arXiv.1403.7539

  2. F. Stephan, C.N. Boulware, M.Krasilnikov, et al., Phys. Rev. ST-AB, 13, No. 2, 020704 (2010). https://doi.org/10.1103/PhysRevSTAB.13.020704

  3. L. Faillace, R. Agustsson, M. Behtouei, et al.. Phys. Rev. Accelerators Beams, 25, No. 6, 063401 (2022). https://doi.org/https://doi.org/10.1103/PhysRevAccelBeams.25.063401

    Article  ADS  Google Scholar 

  4. N. S. Ginzburg, Pis’ma v Zhurn. Tekh. Fiz ., 14, No. 5, 440–443 (1988).

    ADS  Google Scholar 

  5. R. Bonifacio, B. W. J. McNeil, and P.Pierini, Phys. Rev. A, 40, No. 8, 4467–4475 (1989). https://doi.org/https://doi.org/10.1103/PhysRevA.40.4467

    Article  ADS  Google Scholar 

  6. N. S. Ginzburg. A. A. Golovanov, and I.V. Zotova, et al., J. Exp. Theor. Phys., 119, 632–640 (2014). https://doi.org/10.1134/S1063776114100021

  7. N. Balal, I.V. Bandurkin, V. L. Bratman, et al., Appl. Phys. Lett., 107, No. 16, 163505 (2015). https://doi.org/https://doi.org/10.1063/1.4934495

    Article  ADS  Google Scholar 

  8. A. Gover, R. Ianconescu, A. Friedman, et al., Rev. Modern Phys., 91, No. 3, 035003 (2019). https://doi.org/https://doi.org/10.1103/RevModPhys.91.035003

    Article  ADS  MathSciNet  Google Scholar 

  9. V. L. Bratman, Yu. Lurie, and Yu. S.Oparina, Nucl. Instr. Meth. Phys. Res. A, 976, 164268 (2010). https://doi.org/https://doi.org/10.1016/j.nima.2020.164268

    Article  Google Scholar 

  10. H.P. Freund and T.M.Antonsen, Principles of Free-Electron Lasers, 2nd edition, Chapman and Hall, London (1996).

    Google Scholar 

  11. C.Pellegrini, A. Marinelli, and S.Reiche, Rev. Modern Phys., 88, No. 1, 015006 (2016). https://doi.org/https://doi.org/10.1103/RevModPhys.88.015006

    Article  ADS  Google Scholar 

  12. A. Marinelli, J. MacArthur, P.Emma, et al., Appl. Phys. Lett., 111, No. 15, 151101 (2017). https://doi.org/10.1063/1.4990716

  13. E. Gschwendtner and P. Muggli, Nature Rev. Phys., 1, No. 4, 246–248 (2019). https://doi.org/https://doi.org/10.1038/s42254-019-0049-z

    Article  ADS  Google Scholar 

  14. W.Wang, K. Feng, L. Ke, et al., Nature, 595, No. 7868, 516–520 (2021). https://doi.org/https://doi.org/10.1038/s41586-021-03678-x

    Article  ADS  Google Scholar 

  15. R. Bossart, H. Kugler, J.Godot, et al., in: Proc. 3rd European Particle Accelerator Conf., 24–28 March 1992, Berlin, Germany, pp. 1026–1028.

  16. M. Ferrario and C.Ronsivalle, Int. J. Modern Phys. A, 22, No. 23, 4204–4213 (2007). https://doi.org/https://doi.org/10.1142/S0217751X07037767

    Article  ADS  Google Scholar 

  17. S. Lal, K.Pant, and S. Krishnagopal, Nucl. Instr. Meth. Phys. Res. A, 592, No. 3, 180–188 (2008). https://doi.org/https://doi.org/10.1016/j.nima.2008.04.005

    Article  ADS  Google Scholar 

  18. B. V. Zverev and N.P. Sobenin, Electrodynamical Characteristics of the Accelerating Resonators [in Russian], Energoatomizdat, Moscow (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Bandurkin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 66, Nos. 7–8, pp. 555–565, July–August 2023. Russian https://doi.org/10.52452/00213462_2023_66_07_555

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashanin, I.A., Bandurkin, I.V., Bylinsky, N.Y. et al. Design and Testing of the Photogun Resonator and Biperiodic Accelerating Structure with Traveling Wave for the Photoinjector at the IAP RAS. Radiophys Quantum El (2024). https://doi.org/10.1007/s11141-024-10310-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11141-024-10310-1

Navigation