Skip to main content
Log in

Methods for Correction of the Altitude Electron-Density Profiles of the IRI Model for the Bottomside Ionosphere from Satellite Sounding Data

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We offer a comparative analysis and a brief description of three methods for reconstruction of altitude dependences of the ionospheric electron density from topside satellite ionograms containing traces of sounding signal reflections from the Earth’s surface. In all methods, topside profiles are calculated from the x trace of the ionogram in the classical way. To reconstruct the electrondensity profiles in the bottomside ionosphere and refine the cutoff frequency and the altitude of the F2-layer maximum, frequency dependences of the group paths of signals reflected both from the Earth’s surface and from the F2 region in the topside ionosphere are simultaneously used. In two methods, the desired profiles are represented by layers of model distributions with a limited number of parameters, the values of which are found by minimizing the deviations of the calculated group paths from the experimental ones. The resulting profiles can be mapped into IRI model profiles using the cutoff frequency and the altitude of the F2-layer maximum, as well as two parameters determining the shape of the profile in the F region, which are additionally calculated. A new (third) method is given in which the entire bottomside ionosphere is represented by the corrected profile from the IRI model. The profile is fitted to the experimental data by varying the key parameters of the model. Verification of the methods in a model experiment using rocket measurements of the electron density showed that the reconstructed profiles are in good agreement in the F region with each other and with the rocket profile. A fundamental possibility for diagnosing the F1 layer based on high-accuracy experimental data is shown. Examples of calculations of the total (from the satellite altitude) profiles using the satellite ISIS-2 ionograms are given. Recommendations on the practical use of the methods are formulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.P. Danilkin, Geomagn. Aéron., 14, No. 2, 369–371 (1974).

    Google Scholar 

  2. N.P. Danilkin, Geomagn. Aeron., 57, 501–511 (2017). https://doi.org/10.1134/S0016793217050048

    Article  ADS  Google Scholar 

  3. N.P. Danilkin and V.V. Sotsky, Geomagn. Aéron., 16, No. 6, 1002–1008 (1976).

    ADS  Google Scholar 

  4. D. Bilitza, X.Huang, B.W.Reinisch, et al., Radio Sci ., 39, No. 1, RS1S27 (2004). https://doi.org/10.1029/2002RS002840

  5. R. F. Benson, V.Truhlik, X.Huang, et al., Radio Sci ., 47, No. 4, RS0L04 (2012). https://doi.org/10.1029/2011RS004963

  6. P. F. Denisenko and V.V. Sotsky, Izv. Sev.-Kavk. Nauch. Tzentra Vyssh. Estestv. Nauki, No. 2, 59–71 (1987).

  7. A. N. Tikhonov and V.Ya. Arsenin, Solution of Ill-Posed Problems, Winston, New York (1977).

    MATH  Google Scholar 

  8. N.P.Danilkin, P. F.Denisenko, V.A.Kovalev, and V.V.Sotsky, Geomagn. Aéron., 27, No. 4, 550–552 (1987).

    ADS  Google Scholar 

  9. P. F. Denisenko and V.V. Sotsky, Geomagn. Aeron., 61, No. 2, 241–258 (2021). https://doi.org/10.1134/S0016793221020067

    Article  ADS  Google Scholar 

  10. P. F. Denisenko, V.V. Sotsky, and O.A. Maltseva, Adv. Space Res., 67, No. 12, 4078–4088 (2021). https://doi.org/10.1016/j.asr.2021.02.030

    Article  ADS  Google Scholar 

  11. D. Bilitza, D.Altadill, D.Truhlik, et al., Space Weather, 15, No. 2, 418–429 (2017). https://doi.org/10.1002/2016SW001593

  12. D. Bilitza, Adv. Radio Sci ., 16, 1–11 (2018). https://doi.org/10.5194/ars-16-1-2018

    Article  ADS  Google Scholar 

  13. ISO 16457:2022(en). Space environment (natural and artificial) — The Earth’s ionosphere model — International reference ionosphere (IRI) model and extensions to the plasmasphere, ISO, Geneva (2022).

  14. https://www.iso.org/obp/ui/#iso:std:iso:16457:ed-2:v1:en

  15. https://ccmc.gsfc.nasa.gov/modelweb/models/iri2016_vitmo.php

  16. A.N. Lyakhov, S. I.Kozlov, and S. Z. Bekker, Geomagn. Aeron., 59, No. 1, 45–52 (2019). https://doi.org/10.1134/S0016793219010110

    Article  ADS  Google Scholar 

  17. B.G.Barabashov, M.M.Anishin, O.A. Lavrent’ev, and L. P.Radio, Tekhn. Radiosv., 42, No. 3, 15–21 (2019). https://doi.org/10.33286/2075-8693-2019-42-15-21

  18. https://ccmc.gsfc.nasa.gov/modelweb/models/iri2016_help.html

  19. N. G.Kotonaeva, M. V.Kolomin, and V.V.Mikhailov, Russian Meteorology and Hydrology, 46, 187–193 (2021). https://doi.org/10.3103/S1068373921030079

    Article  Google Scholar 

  20. G.A. Zhbankov, P. F.Denisenko, and V.V. Sotsky, Geomagn. Aeron., 59, No. 6, 704–712 (2019). https://doi.org/10.1134/S001679321906015X

    Article  ADS  Google Scholar 

  21. https://giro.uml.edu/IRTAM/

  22. I. A. Galkin, B.W.Reinisch, X. Huang, and D.Bilitza, Radio Sci ., 47, No. 4, RS0L07 (2012). https://doi.org/10.1029/2011RS004952

  23. B. W.Reinisch and I.A.Galkin, Earth Planets Space, 63, 377–381 (2011). https://doi.org/10.5047/eps.2011.03.001

    Article  ADS  Google Scholar 

  24. A. Pignalberi, M.Pietrella, and M.Pezzopane, Atmosphere, 12, No. 8, 1003 (2021). https://doi.org/10.3390/atmos12081003

    Article  ADS  Google Scholar 

  25. K. A.Teterin, Geomagn. Aeron., 53, No. 3, 337–344 (2013). https://doi.org/10.1134/S001679321303016X

    Article  ADS  Google Scholar 

  26. V.P. Uryadov, F. I.Vybornov, and A. V.Pershin, Radiophys. Quantum Electron., 61, No. 12, 867–880 (2018). https://doi.org/10.1007/s11141-019-09943-4

    Article  ADS  Google Scholar 

  27. V.P. Uryadov, A. M. Stanchenkov, A. V.Pershin, et al., XXIII Conf. on Radiophysics Dedicated to the 100th Anniversary of the Birth of N. A. Zheleztsov, May 13–21, 2019, Russia, Nizhniy Novgorod, pp. 179–182.

  28. V.P. Uryadov, A. M. Stanchenkov, A. V.Pershin, et al., 17th All-Russian Open Conf. on Modern Problems of Remote Sounding of the Earth from Space, November 11–15, 2019, Moscow, Russia, p. 500. https://doi.org/10.21046/17DZZconf-2019a

  29. A. Pignalberi, J.B.Habarulema, M.Pezzopane, and R.Rizzi, Space Weather., 17, No. 7, 1131–1164 (2019). https://doi.org/10.1029/2019SW002185

    Article  ADS  Google Scholar 

  30. J. E. Jackson, Proc. IEEE, 57, No. 6, 960–976 (1969). https://doi.org/10.1109/PROC.1969.7140

    Article  Google Scholar 

  31. J. E. Jackson, The Reduction of Topside Ionograms to Electron Density Profiles: preprint NASA TM X-63485, NASA/GODDARD Space Flight Center, Greenbelt, Maryland (1969).

  32. P. F. Denisenko, N. V. Nastas’ina, and D.A.Noranovich, Geomagn. Aeron., 39, No. 4, 523–526 (1999).

  33. A. K.Paul, Radio Sci ., 2, No. 10, 1195–1204 (1967). https://doi.org/10.1002/rds19672101195

    Article  ADS  Google Scholar 

  34. GOST 25645.126-85 Geomagnetic Field. The Model of the Field of In-Earth Sources [in Russian], USSR Gosstandart, Moscow (1985).

  35. N.P. Danilkin, P. F.Denisenko, V.A.Rudakov, et al., Rocket Sounding of the Topside Atmosphere and Ionosphere up to an Altitude of 1500 km [in Russian], Rostov State University, Rostov-on-Don (1989).

  36. https://spdf.sci.gsfc.nasa.gov/pub/data/isis/topside_sounder/ionogram_cdf/isis2/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Sotsky.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 65, No. 9, pp. 713–733, September 2022. Russian DOI: https://doi.org/10.52452/00213462_2022_65_09_713

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denisenko, P.F., Sotsky, V.V. Methods for Correction of the Altitude Electron-Density Profiles of the IRI Model for the Bottomside Ionosphere from Satellite Sounding Data. Radiophys Quantum El 65, 649–667 (2023). https://doi.org/10.1007/s11141-023-10246-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-023-10246-y

Navigation