Skip to main content
Log in

Electromagnetic Field in the Upper Ionosphere Fromhorizontal ELF Ground-Based Transmitter of Finite Length

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We consider the feasibility of detection of electromagnetic response in the upper ionosphere to ground-based large-scale extremely low-frequency (ELF) transmitters by low-orbiting satellites. As an example of such mega transmitters, we consider the ZEVS 82-Hz transmitter and the FENICS facility with decommissioned electric power lines driven by an 0.5–100 Hz oscillator. We numerically simulated the ELF wave energy leakage into the upper ionosphere, generated by an oscillating grounded linear current of finite length suspended above a high-resistance ground. An altitudinal profile of the plasma parameters has been reconstructed using the ionospheric IRI model. The main step in the analysis of the problem is the solution of Maxwell equations in the atmosphere–ionosphere system with the source in the form of a horizontal current dipole. The electromagnetic field is split into potential and vortex components using the potentials introduced. This problem is devoid of axial symmetry, but the potential and vortex components have this symmetry individually. This approach has enabled us to separate the variables and pass to a one-dimensional boundary-value problem using the Hankel transform. A perturbation excited by a horizontal current of finite length is calculated by summing the fields of horizontal current dipoles that are densely distributed along the current line. According to the model proposed, the horizontal ELF antennas with a length of 60 to 100 km driven by a 100–200 A current can provide electric response amplitudes of up to 60–70 μV/m in the upper nightside ionosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.Parrot, Comptes Rendus Physique, 19, Nos. 1–2, 26–35 (2018). https://doi.org/10.1016/j.crhy.2018.02.001

    Article  ADS  Google Scholar 

  2. H.Rothkaehl and M.Parrot, J. Atmosph. Solar-Terr. Phys., 67, Nos. 8–9, 821–828 (2005). https://doi.org/10.1016/j.jastp.2005.02.003

    Article  ADS  Google Scholar 

  3. U. S. Inan, S.A.Cummer, and R.A.Marshall, J. Geophys. Res., 115, No. A6, A00E36 (2010). https://doi.org/10.1029/2009JA014775

  4. M. J. Starks, R.A.Quinn, G.P. Ginet, et al., J. Geophys. Res. Space Phys., 113, No. A9, A09320 (2008). https://doi.org/10.1029/2008JA013112

    Article  ADS  Google Scholar 

  5. E.P.Velikhov, A. A. Zhamaletdinov, et al., Dokl. Akad. Nauk, 338, No. 1, 106–109 (1994).

    Google Scholar 

  6. A.A. Zhamaletdinov, A.N. Shevtsov, E.P.Velikhov, et al., Izv. Atmos. Oceanic Phys., 51, 826–857 (2015). https://doi.org/10.1134/S0001433815080083

  7. P.P. Belyaev, S. V.Polyakov, E.N.Ermakova, et al., Radiophys. Quantum Electron., 45, No. 2, 135–146 (2002). https://doi.org/10.1023/A:1015949625839

  8. E.N.Ermakova, D. S.Kotik, S.V. Polyakov, et al., J. Geophys. Res. Space Phys., 111, No. A4, A04305 (2006). https://doi.org/10.1029/2005JA011420

    Article  ADS  Google Scholar 

  9. E. D.Tereshchenko and P.E.Tereshchenko, Tech. Phys., 62, No. 3, 475–479 (2017). https://doi.org/10.1134/S1063784217030240

    Article  Google Scholar 

  10. A.P. Nickolaenko, A. V. Shvets, and M. Hayakawa, Int. J. Electron. Appl. Res., 3, No. 2, 1–91 (2016)

    Article  Google Scholar 

  11. L. A. Sobchakov, N. L. Astakhova, and S.V.Polyakov, Radiophys. Quantum Electron., 46, No. 12, 918–927 (2003). https://doi.org/10.1023/B:RAQE.0000029586.85070.9b

    Article  ADS  Google Scholar 

  12. E.N.Ermakova, A.V.Ryabov, and D. S.Kotik, Radiophys. Quantum Electron., 64, No. 3, 149–162 (2021). https://doi.org/10.1007/s11141-021-10119-2

    Article  ADS  Google Scholar 

  13. E. N. Ermakova, D. S.Kotik, and A. V.Ryabov, J. Geophys. Res. Space Phys., 127, No. 3, e2021JA030025 (2022). https://doi.org/10.1029/2021JA030025

  14. V. A. Pilipenko, M.Parrot, E. N. Fedorov, and N.G.Mazur, J. Geophys. Res. Space Phys., 124, No. 10 (2019). https://doi.org/10.1029/2019JA026929

  15. E. Fedorov, N. Mazur, V. Pilipenko, and V.Vakhnina„ Radio Sci ., 55, No. 7, e2019RS006943 (2020). https://doi.org/10.1029/2019RS006943

  16. E. N. Fedorov, N. G. Mazur, and V.A.Pilipenko, J. Geophys. Res. Space Phys., 126, No. 10, e2021JA029659 (2021). https://doi.org/10.1029/2021JA029659

  17. E. Fedorov, N. Mazur, V. Pilipenko, and L. Baddeley, J. Geophys. Res. Space Phys., 121, No. 11, 11282–11301 (2016). https://doi.org/10.1002/2016JA023354

    Article  ADS  Google Scholar 

  18. N. G. Mazur, E. N. Fedorov, V. A. Pilipenko, and V. V.Vakhnina, J. Geophys. Res. Space Phys., 123, No. 8, 6692–6702 (2018). https://doi.org/10.1029/2018JA02562

    Article  ADS  Google Scholar 

  19. V. L. Ginzburg, Propagation of Electromagnetic Waves in Plasma, Gordon and Breach, New York (1961).

    Google Scholar 

  20. Yu.V.Vaisleib and L.A. Sobchakov, Antenny, 27, 98–109 (1979).

    Google Scholar 

  21. V. A. Fok, in: V.R.Bursian, Theory of Electromagnetic Fields Used in Electrical Exploration [in Russian], Nedra, Leningrad (1972), pp. 325–342.

  22. K. G. Budden, The Propagation of Radio Waves, Cambridge University Press, New York (1985).

    Book  Google Scholar 

  23. D. Bilitza, Adv. Radio Sci ., 16, 1–11 (2018). https://doi.org/10.5194/ars-16-1-2018

    Article  ADS  Google Scholar 

  24. https://ccmc.gsfc.nasa.gov/modelweb/models/msis_vitmo.php

  25. N. S. Bellyustin and V.P. Dokuchaev, Radiophys. Quantum Electron., 18, No. 1, 10–17 (1975). https://doi.org/10.1007/BF01037652

    Article  ADS  Google Scholar 

  26. http://geoksc.apatity.ru/index.php/14-sample-data-articles/496-fenics-2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Pilipenko.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 65, No. 9, pp. 697–712, September 2022. Russian DOI: https://doi.org/10.52452/00213462_2022_65_09_697

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorov, E.N., Mazur, N.G. & Pilipenko, V.A. Electromagnetic Field in the Upper Ionosphere Fromhorizontal ELF Ground-Based Transmitter of Finite Length. Radiophys Quantum El 65, 635–648 (2023). https://doi.org/10.1007/s11141-023-10245-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-023-10245-z

Navigation