Skip to main content
Log in

Synthesis of an Ultra-Wideband Pulse by a Log-Periodic Antenna with Continuous Excitation by Harmonic Oscillations

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We propose a method for synthesizing ultra-wideband pulses using a vector network analyzer and a wideband transceiving log-periodic antenna. The transfer characteristic of the antenna-feeder transmission line of the system is described by the model of a two-port network whose S-matrix elements are calibrated for at least two heights of the antenna above the reflecting surface (metal plate). The proposed method of calibrating the transfer characteristic of a log-periodic antenna allows one to minimize the amplitude- and phase-frequency distortions, which are introduced to the sensing pulse by the antenna. Employing the developed method, we experimentally demonstrate a possibility of synthesizing an ultra-wideband pulse with a duration of 0.46 ns at the level of half amplitude of the envelope (when the pulse contains several field oscillations) using a log-periodic antenna with a passband of 1.36 to 4.88 GHz (at the level −10 dB). This method is specially developed for creating miniature radar systems using portable vector network analyzers and log-periodic antennas for applications to remote sensing of an underlying surface by ultra-wideband pulses from small-size unmanned aerial vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Schartel, R. Burr, W.Mayer, et al., in: IEEE MTT-S Int. Conf. on Microwaves for Intellegent Mobility, 2018. April 15–17, 2018, Munich, Germany. https://doi.org/10.1109/ICMIM.2018.8443503

  2. M. Schartel, K. Prakasan, P.Hügler, et al., in: IEEE Int. Geoscience and Remote Sensing Symposium, July 22–27, 2018, Valencia, Spain, pp. 8420–8423. https://doi.org/10.1109/IGARSS.2018.8518905

  3. M. García Fernández, Y. Álvarez-López, A. A. Arboleya, et al., IEEE Access, 6, 45100–45112 (2018). https://doi.org/10.1109/ACCESS.2018.2863572

  4. M. Moghaddam, S. Prager, A. Melebar, et al., in: Earth Science Technology Forum, June 24, 2021., https://esto.nasa.gov/forums/estf2021/Presentations/June24/Moghaddam_GPR_ESTF2021.pdf

  5. K.Wu, G.A.Rodriguez, M. Zajcet, et al., Remote Sens. Environ., 235, 111456 (2019). https://doi.org/10.1016/j.rse.2019.111456

  6. K.Wu, E. Jacquemin, L.Palt, et al., in: NSG2021 27th European Meeting on Environmental and Engineering Geophysics, August 29–Septemner 2, 2021, https://doi.org/10.3997/2214-4609.202120117

  7. D. Luebeck, C. Wimmer, L. F. Moreira, et al., Remote Sens., 12, No. 5, 778 (2020). https://doi.org/10.3390/rs12050778

    Article  ADS  Google Scholar 

  8. R. O.R. Jenssen and S. K. Jacobsen, Remote Sens., 13, 2610 (2021). https://doi.org/10.3390/rs13132610

    Article  ADS  Google Scholar 

  9. K. V.Muzalevsky, Zh. Radioélektron, No. 8, 1–16 (2021). https://doi.org/10.30898/1684-1719.2021.8.1

  10. D. Šipoš and D. Gleich, Sensors, 20, No. 8, 2234 (2020). https://doi.org/10.3390/s20082234

    Article  ADS  Google Scholar 

  11. M. García Fernández, G. Álvarez-Narciandi, Y.Álvarez-López, et al., ISPRS J. Photogramm. Remote Sens., 189, 128–142 (2022). https://doi.org/10.1016/j.isprsjprs.2022.04.014

  12. A. Heinzel, M. Schartel, R. Burr, et al., Proc. SPIE, 11003, p. 1100304 (2019). https://doi.org/10.1117/12.2518587

    Article  Google Scholar 

  13. J.Hou, Y.Yan, P. Cong, et al., IOP Conf. Series: Earth and Environmental Science, 719, 042074 (2021). https://doi.org/10.1088/1755-1315/719/4/042074

  14. M. García Fernández, Y. Álvarez-López, F. Las-Heras, et al., Remote. Sens., 11, No. 20, 2357 (2019). https://doi.org/10.3390/rs11202357

  15. G. Ludeno, I.Catapano, A.Rengab, et al., Remote Sens. Environ., 212, 90–102 (2018). https://doi.org/10.1016/j.rse.2018.04.040

  16. G. Fasano, I.Catapano, A.Rengab, et al., Int. Conf. on Unmanned Aircraft Systems (ICUAS), June 13–16, 2017, Miami, USA, pp. 1316–1323. https://doi.org/10.1109/ICUAS.2017.7991432

  17. M. A.Yarlequé, S.Alvarez, H. J. Martínez, et al., in: Int. Conf. on Electromagnetism in Advanced Applications, September 11–15, 2017, Verona, Italy, pp. 1646–1648. https://doi.org/10.1109/ICEAA.2017.8065606

  18. R. Burr, M. Schartel, P. Schmidt, et al., IEEE MTT-S Int. Conf. on Microwaves for Intelligent Mobility, April 15–17, 2018, Munich, Germany. https://doi.org/10.1109/ICMIM.2018.8443526

  19. F. Merli, J.-F. Zurcher, A. Freni, and A. K. Skrivervik, IEEE Trans. Antennas Propag., 57, No. 11, 3458–3466 (2009). https://doi.org/10.1109/TAP.2009.2027140

    Article  ADS  Google Scholar 

  20. A. Khaleghi, H. S. Farahani, and I.Balasingham, IEEE Antennas Wireless Propag. Lett., 10, 967–970 (2011). https://doi.org/10.1109/LAWP.2011.2167735

    Article  ADS  Google Scholar 

  21. W. Sörgel and W.Wiesbeck, EURASIP J. Appl. Sign. Process., 3, 296–305 (2005). https://doi.org/10.1155/ASP.2005.296

    Article  Google Scholar 

  22. A. L. Drabkin, V. L. Zuzenko, and A. G.Kislov, Antenna Feeder Devices [in Russian], Sovetskoe Radio, Moscow (1974).

    Google Scholar 

  23. M. I. Finkel’shtein, V. I. Karpukhin, V.A. Kutev, and V.N.Metelkin, Subsurface Radar [in Russian], Radio i Svyaz’, Moscow (1994).

  24. D. J. Daniels, Ground Penetrating Radar, The Institution of Electrical Engineers, London (2004).

    Book  Google Scholar 

  25. P.Rulikowski and J. Barrett, IEEE Microw. Wireless Comp. Lett., 18, No. 5, 356–358 (2008). https://doi.org/10.1109/LMWC.2008.922131

    Article  Google Scholar 

  26. M. García Fernández , Y. Álvarez-López, A. de Mitri, et al., Remote Sens., 12, No. 11, 1833 (2020). https://doi.org/10.3390/rs12111833

  27. L.A.Robinson, W.B.Weir, L.Young, et al., Proc. IEEE, 62, No. 1, 36–44 (1974). https://doi.org/10.1109/PROC.1974.9383

  28. M. I. Finkel’shtein and V.A. Kutev, Radiotekh. Élektron., 17, No. 10, 2107–2112 (1972).

  29. V.A. Mikhnev and P.Vainikainen, IEEE Trans. Geosci. Remote Sens., 41, No. 1, 75–80 (2003). https://doi.org/10.1109/TGRS.2002.808060

    Article  ADS  Google Scholar 

  30. S. Lambot, E.C. Slob, I. van den Bosch, et al., IEEE Trans. Geosci. Remote. Sens., 42, No. 11, 2555–2568 (2004). https://doi.org/10.1109/TGRS.2004.834800

    Article  ADS  Google Scholar 

  31. L.Tsang, J. A.Kong, and K.-H.Ding, Scattering of Electromagnetic Waves: Theories and Applications. Vol. 1, Wiley, Hoboken (2001).

    Book  Google Scholar 

  32. G. T. Markov and A. F.Chaplin, Excitation of Electromagnetic Waves [in Russian], Radio i Svyaz’, Moscow (1983).

    Google Scholar 

  33. C.Y. Kee and C.Wang, in: IEEE Int. Symp. on Antennas and Propagation & USNC/URSI National Radio Science Meeting, July 9–14, 2017, San Diego, USA, pp. 1357–358. https://doi.org/10.1109/APUSNCURSINRSM.2017.8072721

  34. L. A.Vainshtein and V.D. Zubakov, Isolation of Signals against a Background of Random Interference [in Russian], Sovetskoe Radio, Moscow (1960).

    Google Scholar 

  35. F. J. Harris, Proc. IEEE, 66, No. 1, 51–83 (1978). https://doi.org/10.1109/PROC.1978.10837.

    Article  ADS  Google Scholar 

  36. M. Abramowitz and I.A. Steagun, eds., Handbook of Special Functions with Formulas, Graphs, and Tables, Dover, New York (1972).

    MATH  Google Scholar 

  37. V. L. Mironov, I.P. Molostov, Y. I. Lukin, and A.Y. Karavaisky, in: Int. Siberian Conf. on Control and Communications (SIBCON), September 12–13, 2013, Krasnoyarsk, Russia. https://doi.org/10.1109/SIBCON.2013.6693609

  38. https://planarchel.ru/catalog/analizatory_tsepey_vektornye/vektornye_reflektometry_serii_caban/reflektometr-vektornyy-caban-r60/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Muzalevsky.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 65, No. 8, pp. 677–686, August 2022. Russian DOI: https://doi.org/10.52452/00213462_2022_65_08_677

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muzalevsky, K.V. Synthesis of an Ultra-Wideband Pulse by a Log-Periodic Antenna with Continuous Excitation by Harmonic Oscillations. Radiophys Quantum El 65, 615–623 (2023). https://doi.org/10.1007/s11141-023-10242-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-023-10242-2

Navigation