Skip to main content
Log in

Diagnostic Capabilities of a Microwave Resonator Probe for Studies of the Parameters of a Nonstationary Magnetoplasma

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We present the experimental results of developing the method for measurements of the parameters of a magnetoplasma using a microwave resonator probe based on a section of a two-wire line and aligned with an external magnetic field. It is found that the probe resonance is determined by the plasma refractive index for an extraordinary wave. The fact that the measuring system has two resonances at frequencies which are lower and higher than the eigenfrequency of the probe in free space makes it possible to measure the density of the nonstationary plasma in a wide range of values. The method of the third resonator harmonic is used as an independent method. The effect of disappearance of the probe resonance near the electron cyclotron frequency allows measuring the value of the external magnetic field with high accuracy. An increase in the amplitude of the high-frequency signal fed to the resonator leads to the appearance of ponderomotive nonlinearity that affects the probe data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.A.Aidakina, M.E.Gushchin, I.Y. Zudin, et al., Phys. Plasmas, 25, No. 7, Art. no. 072114 (2018). https://doi.org/10.1063/1.5012554

  2. N.A.Aidakina, M.E.Gushchin, I.Y. Zudin, et al., Phys. Plasmas, 25, No. 12, 122104 (2018). https://doi.org/10.1063/1.5054819

  3. V. L. Frolov, V.O.Rapoport, E. A. Shorokhova, et al., JETP Lett., 101, No. 5, 313–317 (2015). https://doi.org/https://doi.org/10.1134/S0021364015050094

    Article  ADS  Google Scholar 

  4. A. V.Kostrov, A. V. Strikovskiy, and A.V. Shashurin, Plasma Phys. Rep., 27, No. 2, 137–142 (2001). https://doi.org/https://doi.org/10.1134/1.1348491

    Article  ADS  Google Scholar 

  5. R. B. Piejak, J.Al-Kuzee, and N. St. J. Braithwaite, Plasma Sources Sci. Technol., 14, No. 4, 734–743 (2005). https://doi.org/10.1088/0963-0252/14/4/012

  6. S. K. Karkari, A.R. Ellingboe, and C. Gaman, Appl. Phys. Lett., 93, No. 7, 071501 (2008). https://doi.org/10.1063/1.2971236

  7. J. Xu, K.Nakamura, Q. Zhang, and H. Sugai, Plasma Sources Sci. Technol., 18, No. 4, 045009 (2009). https://doi.org/10.1088/0963-0252/18/4/045009

  8. A. K.Pandey, K. K. Joshi, and S.K.Karkari, Plasma Sources Sci. Technol., 29, No. 1, 015009 (2020). https://doi.org/10.1088/1361-6595/ab5695

  9. G. S. Gogna, C. Gaman, S. K. Karkari, and M.Turner, Appl. Phys. Lett., 101, No. 4, 042105 (2012). https://doi.org/10.1063/1.4738888

  10. R. L. Stenzel, Rev. Sci. Instrum., 47, No. 5, 603–607 (1976). https://doi.org/https://doi.org/10.1063/1.1134697

    Article  ADS  Google Scholar 

  11. D. J.Peterson, P.Kraus, T.C.Chua, et al., Plasma Sources Sci. Technol., 26, No. 9, 095002 (2017). https://doi.org/10.1088/1361-6595/aa80fa

  12. D. V.Yanin, A. V.Kostrov, A. I. Smirnov, et al., Tech. Phys., 57, No. 4, 468–477 (2012). https://doi.org/https://doi.org/10.1134/S1063784212040251

    Article  Google Scholar 

  13. I. G.Kondrat’ev, A.V.Kostrov, A. I. Smirnov, et al., Plasma Phys. Rep. , 28, No. 11, 900–905 (2002). https://doi.org/10.1134/1.1520283

  14. D. V.Yanin, A. V.Kostrov, A. I. Smirnov, and A.V. Strikovskii, Tech. Phys., 53, No. 1, 129–133 (2008). https://doi.org/https://doi.org/10.1134/S1063784208010246

    Article  Google Scholar 

  15. B. L. Sands, N. S. Siefert, and B.N.Ganguly, Plasma Sources Sci. Technol., 16, No. 4, 716–725 (2007). https://doi.org/https://doi.org/10.1088/0963-0252/16/4/005

    Article  ADS  Google Scholar 

  16. R. B. Piejak, V.A.Godyak, R. Garner, and B. M.Alexandrovich, J. Appl. Phys., 95, No. 7, 3785 (2004). https://doi.org/https://doi.org/10.1063/1.1652247

    Article  ADS  Google Scholar 

  17. A. G. Galka, D. V.Yanin, A. V.Kostrov, et al., J. Appl. Phys., 125, No. 12, 124501 (2019). https://doi.org/10.1063/1.5082169

  18. G. S. Gogna and S. K. Karkari, Appl. Phys. Lett., 96, No. 15, 151503 (2010). https://doi.org/10.1063/1.3400214

  19. G. S. Gogna, S. K. Karkari, and M.M.Turner, Phys. Plasmas, 21, No. 12, 123510 (2014). https://doi.org/10.1063/1.4904037

  20. S. K. Karkari, G. S. Gogna, D. Boilson, et al., Contrib. Plasma Phys., 50, No. 9, 903–908 (2010). https://doi.org/https://doi.org/10.1002/ctpp.201010153

    Article  ADS  Google Scholar 

  21. V. L. Ginzburg, The Propagation of Electromagnetic Waves in Plasmas, Pergamon Press, Cambridge (1970).

    Google Scholar 

  22. M. S. Malyshev, V.V.Nazarov, A.V.Kostrov, and A.G.Galka, JETP Lett., 110, No. 4, 262–265 (2019), https://doi.org/https://doi.org/10.1134/S0021364019160070

    Article  ADS  Google Scholar 

  23. A. G. Litvak, in: M. A. Leontovich, ed., Reviews of Plasma Physics. Vol. 10, Consultants Bureau, New York (1986), pp. 294–424.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Galka.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 65, No. 8, pp. 609–620, August 2022. Russian https://doi.org/10.52452/00213462_2022_65_08_609

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galka, A.G., Malyshev, M.S. & Kostrov, A.V. Diagnostic Capabilities of a Microwave Resonator Probe for Studies of the Parameters of a Nonstationary Magnetoplasma. Radiophys Quantum El 65, 555–565 (2023). https://doi.org/10.1007/s11141-023-10236-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-023-10236-0

Navigation