Skip to main content
Log in

Phase-Difference Approach for GNSS Global Ionospheric Total Electron Content Mapping

  • Published:
Radiophysics and Quantum Electronics Aims and scope

The paper proposes an ingenious method for global ionospheric total electron content (TEC) mapping based on a phase-difference approach to the analysis of phase measurements of GNSS signals at a pair of coherent frequencies on a distributed network of ground-based receivers of the global IGS network. The proposed approach uses the representation of the ionosphere as a thin layer with the TEC distribution given by a truncated expansion into a series of spherical harmonics in the Sun-synchronous geomagnetic coordinate system. The expansion coefficients are determined by the least squares technique with a TEC positivity constraint, which is implemented by solving the corresponding linear complementarity problem. The proposed method does not require estimation of the differential code biases of both satellites and receivers, which makes it possible to combine data from various GNSS, such as GPS, GLONASS, and Galileo, within a single algorithm. The results of testing the proposed method on synthesized observation data using the real geometry of GNSS satellites, IGS receivers, and the ionosphere given by the NeQuick2 model, are presented. The results of comparing the real global ionospheric maps obtained by the proposed method and the maps of the CODE center are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. É. L. Afraimovich and N. P. Perevalova, GPS Monitoring of the Earth’s Upper Atmosphere [in Russian], State Institution “Scientific Center for Plastic and Reconstructive Surgery of the East-Siberian Scientific Center of the Siberian Branch of the Russian Medical Academy of Sciences,” Irkutsk (2006).

  2. M. Hernández-Pajares, J. M. Juan, J. Sanz, et al., J. Geod., 83, Nos. 3–4, 263–275 (2009). https://doi.org/10.1007/s00190-008-0266-1

    Article  ADS  Google Scholar 

  3. T. L. Gulyaeva and I. Stanislawska, Ann. Geophys., 26, No. 9, 2645–2648 (2008). https://doi.org/10.5194/angeo-26-2645-2008

    Article  ADS  Google Scholar 

  4. I. A. Nesterov, E. S. Andreeva, A. M. Padokhin, et al., GPS Solut., 21, No. 4, 1679–1694 (2017). https://doi.org/10.1007/s10291-017-0646-1

  5. T. L. Gulyaeva, F. Arikan, M. Hernández-Pajares, and I. Stanislawska, J. Atmos. Solar. Terr. Phys., 102, 329–340 (2013). https://doi.org/10.1016/j.jastp.2013.06.011

    Article  ADS  Google Scholar 

  6. N. Jakowski, C. Mayer, M. M. Hoque, and V. Wilken, Radio Sci ., 46, No. 6, RS0D18 (2011). https://doi.org/10.1029/2010RS004620

  7. A. V. Zhukov, Y. V. Yasyukevich, and A. E. Bykov, GPS Solut., 25, No. 1, 19 (2021). https://doi.org/10.1007/s10291-020-01055-1

    Article  Google Scholar 

  8. D. Roma-Dollase, M. Hernández-Pajares, A. Krankowski, et al., J. Geod., 92, No. 6, 691–06 (2018). https://doi.org/10.1007/s00190-017-1088-9

    Article  ADS  Google Scholar 

  9. S. Schaer, “Mapping and predicting the Earth’s ionosphere using the global positioning system,” PhD thesis, Bern (1999).

  10. Y. V. Yasyukevich, A. A. Myl’nikova, V. E. Kunitsyn, and A. M. Padokhin, Geomagn. Aeron., 55, No. 6, 763–769 (2015). https://doi.org/10.1134/S001679321506016X

  11. A. Komjathy, B. Wilson, T. Runge, et al., in: Proc. ION National Technical Meeting, January 28–30, 2002, San Diego, USA.

  12. J. Feltens, Space Weather, 5, No. 12, 1–17 (2007). https://doi.org/10.1029/2006SW000294

    Article  Google Scholar 

  13. E. S. Andreeva, V. E. Kunitsyn, and E. D. Tereshchenko, Ann. Geophys., 10, Nos. 11–12, 849–855 (1992).

    ADS  Google Scholar 

  14. M.Hernández-Pajares, J. Juan, and J. Sanz, J. Atmos. Sol. Terr. Phys., 61, No. 16, 1237–1247 (1999). https://doi.org/10.1016/S1364-6826(99)00054-1

    Article  ADS  Google Scholar 

  15. V. E. Kunitsyn, I. A. Nesterov, A. M. Padokhin, et al., J. Commun. Technol. Electron., 56, No. 11, 1269–1281 (2011). https://doi.org/10.1134/S1064226911100147

  16. I. A. Nesterov and V. E. Kunitsyn, Adv. Space Res., 47, No. 10, 1789–1803 (2011). https://doi.org/10.1016/j.asr.2010.11.034

    Article  ADS  Google Scholar 

  17. K. M. Laundal and A. D. Richmond, Space Sci. Rev., 206, 27–59 (2017). https://doi.org/10.1007/s11214-016-0275-y

    Article  ADS  Google Scholar 

  18. K. Rawer, in: B. Landmark, ed., Meteorolog. Astronom. Influences Radio Wave Propag., Pergamon Press, Oxford (1963).

  19. H. Zhang, P. Xu, W. Han, et al., Adv. Space Res., 51, No. 6, 988–1000 (2013). https://doi.org/10.1016/j.asr.2012.06.026

  20. F. Azpilicueta, C. Brunini, and S. M.Radicella, Adv. Space Res., 38, No. 11, 2324–2331 (2006). https://doi.org/10.1016/j.asr.2005.07.069

    Article  ADS  Google Scholar 

  21. B. Hofmann-Wellenhof, H. Lichtenegger, and E. Wasle, GNSS—Global Navigation Satellite Systems: GPS, GLONASS, Galileo, and more, Springer, Vienna (2008).

    Google Scholar 

  22. A. Savitzky and M. J. E. Golay, Anal. Chem., 36, No. 8, 1627–1639 (1964). https://doi.org/10.1021/ac60214a047

    Article  ADS  Google Scholar 

  23. P. Alken, E. Thébault, C. D. Beggan, et al., Earth, Planets Space, 73, 49 (2021). https://doi.org/10.1186/s40623-020-01288-x

    Article  ADS  Google Scholar 

  24. G.H. Golub and M.A. Saunders, in: J. Abadie, ed., Integer and Nonlinear Programming, North-Holland, Amsterdam (1970), pp. 229–256.

    Google Scholar 

  25. K. G. Murty, Linear Complementarity, Linear and Nonlinear Programming, Heldermann, Berlin (1988).

    MATH  Google Scholar 

  26. C. E. Lemke, in: G. B. Dantzig and A. F. Veinott, eds., Mathematics of the Decision Sciences, Amer. Math. Soc., Rhode Island (1968), pp. 95–114.

    Google Scholar 

  27. Y. Yasyukevich, A. Mylnikova, and A. Vesnin, Sensors, 20, No. 19, 5702 (2020). https://doi.org/10.3390/s20195702

    Article  ADS  Google Scholar 

  28. B. Nava, P. Coisson, and S. M. Radicella, J. Atmos. Sol. Terr. Phys., 70, No. 15 (2008). https://doi.org/10.1016/j.jastp.2008.01.015

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Padokhin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 65, No. 7, pp. 527–543, July 2022. Russian DOI: https://doi.org/10.52452/00213462_2022_65_07_527

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padokhin, A.M., Andreeva, E.S., Nazarenko, M.O. et al. Phase-Difference Approach for GNSS Global Ionospheric Total Electron Content Mapping. Radiophys Quantum El 65, 481–495 (2022). https://doi.org/10.1007/s11141-023-10230-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-023-10230-6

Navigation