Skip to main content
Log in

Experimental Study of the Reflectivity of Superconducting Nb-Based Films in the Subterahertz Frequency Band

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We present the results of studying the reflectivity of thin Nb and NbTiN films deposited on silicon substrates in the frequency range 205–255 GHz at temperatures from 5 K to room temperature. The experiment was performed using a resonator spectrometer, in which the studied specimen is a mirror in the high-Q Fabry–Perot resonator. The comparison of the obtained results with earlier works shows that the reflection losses for Nb in the superconducting state is several times lower than those for the high-temperature superconductor YBa2Cu3O7−δ and lower than those for the samples of high-purity copper cooled down to cryogenic temperatures, which is the best of the classical conductors in terms of surface resistance. This allows one to state that niobium and its nitrides cooled down to temperatures below 9 K can be used efficiently as antenna materials (both as coatings on mirror antennas and for manufacture of planar nanoantennas of the detector module) in order to ensure the minimum level of thermal noise in subterahertz radio telescopes with cooled and superconducting receivers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U.Pfeiffer, Integrated Circuit Design for Terahertz Applications: 6G Wireless Summit (2019). http://www.6gsummit.com/wp-content/uploads/2019/04/Day1_Tutorial4_Pfeiffer_WuppertalUni.pdf

  2. Yu.Yu. Balega, A. M. Baryshev, G.M.Bubnov, et al., Radiophys. Quantum Electron., 63, No. 7, 479–500 (2020). https://doi.org/10.1007/s11141-021-10073-z

  3. S. Ergün and S. Sönmez, J. Military Inform. Sci., 3, No. 1, 13–16 (2015).https://doi.org/10.17858/jmisci.58124

  4. C.Dodson, M. J. Fitch, R.Osiander, and J. B. Spicer, Proc. SPIE. Defense and Security, 5, 5790 (2005). https://doi.org/10.1117/12.604751

    Article  Google Scholar 

  5. J. F. Federici, B. Schulkin, F. Huang, et al., Semicond. Sci. Technol., 20, No. 7, S266–S280 (2005).https://doi.org/10.1088/0268-1242/20/7/018

    Article  Google Scholar 

  6. H.-B. Liu, H. Zhong, N.Karpowicz, et al., Proc. IEEE Terahertz Spectrosc. Imag. Defense Security Appl., 95, No. 8, 1514–1527 (2007).https://doi.org/10.1109/JPROC.2007.898903

  7. A. Shchepetilnikov, P.A.Gusikhin, V. M. Muravev, et al., J. Infrared Millim. Terahertz Waves, 41, 655–664 (2020).https://doi.org/10.1007/s10762-020-00692-4

  8. A.Ren, A. Zahid, D. Fan, et al., Trends Food Sci. Technol., 85, 241–251 (2019).https://doi.org/10.1016/j.tifs.2019.01.019

  9. A. Heidari, in: S.Adibi, ed., Mobile Health: A Technology Road Map, Springer, Cham, (2015), pp. 663–670.https://doi.org/10.1007/978-3-319-12817-7_28

  10. J.-H. Son, S. J.Oh, and H.Cheon, J. Appl. Phys., 125, No. 19, 190901 (2019).https://doi.org/10.1063/1.5080205

  11. O.A. Smolyanskaya, N.V.Chernomyrdin, A.A.Konovko, et al., Prog. Quantum Electron., 62, 1–77 (2018).https://doi.org/10.1016/j.pquantelec.2018.10.001

  12. P. Knobloch, C. Schildknecht, T.Kleine-Ostmann, et al., Med. Biol., 47, 3875–3884 (2002).https://doi.org/10.1088/0031-9155/47/21/327

  13. Ch.Ciano, M. Flammini, V.Giliberti, et al., IEEE Trans. Terahertz Sci. Technol., 8, No. 4, 390–396 (2018).https://doi.org/10.1109/TTHZ.2018.2819505

  14. B. Jackson, J. Bowen, G.Walker, et al., IEEE Trans. Terahertz Sci. Technol., 1, No. 1, 220–231 (2011).https://doi.org/10.1109/TTHZ.2011.2159538

  15. K. Piccolo and M. Fukunaga, Appl. Phys. A, 100, 591–597 (2010).https://doi.org/10.1007/s00339-010-5643-y

  16. E.Abraham, A.Younus, J.C.Delagnes, and P. Mounaix, Appl. Phys. A, 100, 585–590 (2010).https://doi.org/10.1007/s00339-010-5642-z

  17. https://www.adroitmarketresearch.com/industry-reports/terahertz-market?utm_source=AD

  18. I. D. Novikov, S. F. Likhachev, Yu. A. Shchekinov, et al., Phys. Usp., 64, No. 4, 386–419 (2021).https://doi.org/10.3367/UFNe.2020.12.038898

    Article  ADS  Google Scholar 

  19. F.Paolucci, V.Buccheri, G. Germanese, et al., J. Appl. Phys., 128, No. 19, 194502 (2020).https://doi.org/10.1063/5.0021996

  20. https://www.almaobservatory.org/en/about-alma-at-first-glance/how-alma-works/technologies/interferometry/

  21. https://www.eso.org/public/teles-instr/apex/

  22. http://millimetron.ru/index.php/en/

  23. Y.-J. Lin and M. Jarrahi, Rep. Prog. Phys., 83, No. 6, 1–21 (2020).https://doi.org/10.1088/1361-6633/ab82f6

    Article  Google Scholar 

  24. F. Martini, S.Cibella, A.Gaggero, et al., Opt. Express, 29, No. 6, 7956–7965 (2021).https://doi.org/10.1364/OE.410317

  25. M. Kroug, S. Cherednichenko, H.Merkel, et al., IEEE Trans. Appl. Supercond., 11, No. 1, 962–965 (2001).https://doi.org/10.1109/77.919508

  26. P. N. Dmitriev, L.V. Filippenko, and V.P.Koshelets, in: Josephson Junctions. History, Devices, and Applications, Jenny Stanford Publishing, New York (2017) pp. 185–244.https://doi.org/10.1201/9781315364520

  27. K. I.Rudakov, A. V.Khudchenko, L. V. Filippenko, et al., Appl. Sci., 11, No. 21, 10087 (2021).https://doi.org/10.3390/app112110087

  28. J. Chang, J. W. N. Los, R. Gourgues, et al., Photon. Res., 10, No. 4, 1063–1070 (2022).https://doi.org/10.1364/PRJ.437834

    Article  Google Scholar 

  29. R. Cheng, J.Wright, H.G.Xing, et al., Appl. Phys. Lett., 117, No. 13, 132601 (2020).https://doi.org/10.1063/5.0018818

  30. Ch.M.Natarajan, M.G.Tanner, and R.H.Hadfield, Supercond. Sci. Technol., 25, No. 6, 063001 (2012).https://doi.org/10.1088/0953-2048/25/6/063001

  31. A. D. Semenov, G. N. Gol’tsman, and A. A.Korneev, Phys. C: Supercond., 351, No. 4, 349–356 (2001).https://doi.org/10.1016/S0921-4534(00)01637-3

  32. A. V. Smirnov, A. M. Baryshev, P. de Bernardis, et al., Radiophys. Quantum Electron., 54, Nos. 8–9, 557–568 (2012).https://doi.org/10.1007/s11141-012-9314-z

    Article  ADS  Google Scholar 

  33. V.V.Parshin, E.A. Serov, G. M. Bubnov, et al., IEEE Trans. Appl. Supercond., 30, No. 8, 9001705 (2020).https://doi.org/10.1109/TASC.2020.2994964

  34. V.V.Parshin, E.A. Serov, G. M. Bubnov, et al., Radiophys. Quantum Electron., 56, Nos. 8–9, 554–560 (2014).https://doi.org/10.1007/s11141-014-9458-0

    Article  ADS  Google Scholar 

  35. E.A. Serov, V.V.Parshin, and G.M.Bubnov, IEEE Trans. Microw. Theory Techn., 64, No. 11, 3828–3838 (2016).https://doi.org/10.1109/TMTT.2016.2609411

    Article  ADS  Google Scholar 

  36. A. E. Kaplan, J. Opt. Soc. Am., 35, No. 6, 1328–1340 (2018).https://doi.org/10.1364/JOSAB.35.001328

    Article  ADS  Google Scholar 

  37. G. E.H.Reuter and E.H. Sondheimer, Proc. Roy. Soc. Lond. A, 195, No. 1042, 336–364 (1948).https://doi.org/10.1098/rspa.1948.0123

    Article  ADS  Google Scholar 

  38. J. C. Booth, D. H.Wu, and S. M. Anlage, Rev. Sci. Instrum., 65, No. 6, 2082–2090 (1994).https://doi.org/10.1063/1.1144816

    Article  ADS  Google Scholar 

  39. D. C. Mattis and J. Bardeen, Phys. Rev., 111, No. 2, 412–417 (1958).https://doi.org/10.1103/PhysRev.111.412

    Article  ADS  Google Scholar 

  40. I. Wilke, M. Khazan, C.T.Rieck, et al., J. Appl. Phys., 87, No. 6, 2984–2988 (2000).https://doi.org/10.1063/1.372287

  41. A.Wang and Z.Kawakami, Phys. C.: Supercond. Appl. 282–287, P. 4, 2533–2534 (1997).https://doi.org/10.1016/S0921-4534(97)01338-5

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Gunbina.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 65, Nos. 5–6, pp. 516–526, May–June 2022. Russian DOI: https://doi.org/10.52452/00213462_2022_65_05_516

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunbina, A.A., Serov, E.A., Mineev, K.V. et al. Experimental Study of the Reflectivity of Superconducting Nb-Based Films in the Subterahertz Frequency Band. Radiophys Quantum El 65, 471–480 (2022). https://doi.org/10.1007/s11141-023-10229-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-023-10229-z

Navigation