Skip to main content
Log in

Studies of Small-Size Millimeter-Wave Traveling-Wave Tubes with Multiple Sheet Electron Beams

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We present the results of the studies aimed at developing small-size traveling-wave tubes (TWTs) with multiple sheet electron beams, which operate in the short-wavelength part of the millimeterwaverange. Two versions of such TWTs are considered. The TWT operating at frequencies near 0.22 THz with a triple sheet beam, which interacts with the higher transverse mode of the slow wave structure in the form of a dual comb, is studied. We describe the design of the electronoptical system which forms a beam consisting of several sheets with elliptical cross sections having an area compression of about 16 units. We also consider a TWT with a slow-wave structure in the form of a 3D meander line with several channels for electron beams, whichis placed in a rectangular waveguide. On each side, this structure is supported by dielectric supports. A slow-wave V-band (50–70 GHz) structure has been designed for a TWT with channels for four sheet electron beams. The results of calculating electrodynamic characteristics of the slow-wave structure are presented along with the results of three-dimensional simulation of the processes of the electron–wave interaction by the particle-in-cell method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. S.Nusinovich, S. J.Cooke, M.Botton, and B. Levush, Phys. Plasmas, 16, No. 6, 063102 (2009). https://doi.org/10.1063/1.3143123

  2. Y. M. Shin, Phys. Plasmas, 19, No. 6, 063115 (2012). https://doi.org/10.1063/1.4731695

  3. A. Gee and Y. M. Shin, Phys. Plasmas, 20, No. 7, 073106 (2013). https://doi.org/10.1063/1.4813800

  4. G. Shu, G. Liu, Zh.Qian, and W.He, IEEE Trans. Electron Devices, 68, No. 6, 3021–3027‘(2021). https://doi.org/10.1109/TED.2021.3075417

  5. Z. Zhang, C.Ruan, W.Wang, and W.He, IEEE Trans. Plasma Sci., 49, No. 9, 3029–3034 (2021). https://doi.org/https://doi.org/10.1109/TPS.2021.3100523

    Article  ADS  Google Scholar 

  6. Z. Lu, M. Zhu, K.Ding, et al., IEEE Trans. Electron Dev., 67, No. 5, 2176–2181 (2020). https://doi.org/10.1109/TED.2020.2981992

  7. Z. Lu, K.Ding, R.Wen, et al., IEEE Electron Dev. Lett., 41, No. 2, 284–287 (2020). https://doi.org/10.1109/LED.2019.296368

  8. Z.Wen, J. Luo, Y. Li, et al., IEEE Trans. Plasma Sci., 49, No. 6, 1842–1847 (2021). https://doi.org/https://doi.org/10.1109/TPS.2021.3081253

    Article  ADS  Google Scholar 

  9. A. A. Burtsev, Yu. A. Grigor’ev, A. V. Danilushkin, et al., Tech. Phys., 63, No. 3, 452–459 (2018). https://doi.org/10.1134/S1063784218030040

  10. A. Baig, D.Gamzina, T.Kimura, et al., IEEE Trans. Electron Dev., 64, No. 5, 2390–2397 (2017). https://doi.org/10.1109/TED.2017.2682159

  11. I. A. Navrotsky, A. A. Burtsev, V.V.Emelyanov, et al., IEEE Trans. Electron Dev., 68, No. 2, 798–803 (2021). https://doi.org/10.1109/TED.2020.3041425

  12. W. Shao, D. Xu, Zh.Wang, et al., Phys. Plasmas, 26, No. 6, 063106 (2019). https://doi.org/10.1063/1.5096331

  13. H. Liang, Q. Xue, C.Ruan, et al., IEEE Trans. Electron Dev., 65, No. 1, 270–276 (2018). https://doi.org/10.1109/TED.2017.2773835

  14. C.Ruan, P.Wang, H. Zhang, et al., Sci. Rep., 11, 940 (2021). https://doi.org/https://doi.org/10.1038/s41598-020-80276-3

    Article  Google Scholar 

  15. P.Wang, Y. Su, Z. Zhang, et al., IEEE Trans. Electron Dev., 68, No. 10, 5215–5219 (2021). https://doi.org/https://doi.org/10.1109/TED.2021.3105363

    Article  ADS  Google Scholar 

  16. I. A. Navrotsky, A. A. Burtsev, A.Y.Kivokurtsev, et al., in: 10th UK-Europe-China Workshop on Millimetre Waves and Terahertz Technologies (UCMMT), September, 11–13, 2017, Liverpool, UK. https://doi.org/10.1109/UCMMT.2017.8068467

  17. A. J.Ploskikh and N.M.Ryskin, Izv. Sarat. Univ. Nov. Ser., Ser. Fiz., 19, No. 2, 113–121 (2019). https://doi.org/10.18500/1817-3020-2019-19-2-113-121

  18. I. A. Navrotskiy and N.M.Ryskin, IEEE Access, 10, 1334–1338 (2022). https://doi.org/https://doi.org/10.1109/ACCESS.2021.3138963

    Article  Google Scholar 

  19. https://www.3ds.com/products-services/simulia/products/cst-studio-suite/

  20. A. A. Burtsev, Yu. A. Grigor’ev, I. A. Navrotsky, et al., Tech. Phys. Lett., 42, No. 5, 543–545 (2016). https://doi.org/10.1134/S1063785016050229

  21. Y. M. Shin, L.R. Barnett, and N.C. Luhmann, IEEE Trans. Electron Dev., 56, No. 5, 706–712 (2009). https://doi.org/https://doi.org/10.1109/TED.2009.2015404

    Article  ADS  Google Scholar 

  22. A. G.Rozhnev, N. M.Ryskin, T.A.Karetnikova, et al., Radiophys. Quantum Electron., 56, Nos. 8–9, 542–553 (2013). https://doi.org/10.1007/s11141-014-9457-1

  23. T. A. Karetnikova, A. G.Rozhnev, N. M.Ryskin, et al., J. Commun. Technol. Electron., 61, No. 1, 50–55 (2016). https://doi.org/10.1134/S1064226915120116

  24. T. A. Karetnikova, A. G.Rozhnev, N. M.Ryskin, et al., IEEE Trans. Electron Dev., 65, No. 6, 2129–2134 (2018). https://doi.org/10.1109/TED.2017.2787960

  25. E. J.Kowalski, M.A. Shapiro, and R. J.Temkin, IEEE Trans. Electron Dev., 62, No. 5, 1609–1616 (2015). https://doi.org/https://doi.org/10.1109/TED.2015.2407865

    Article  ADS  Google Scholar 

  26. G. V.Torgashov, R. A.Torgashov, V. N. Titov, et al., IEEE Electron Dev. Lett., 40, No. 12, 1980–1983 (2019). https://doi.org/https://doi.org/10.1109/LED.2019.2945502

    Article  ADS  Google Scholar 

  27. R. A.Torgashov, A. G.Rozhnev, and N.M.Ryskin, IEEE Trans. Electron Dev., 69, No. 3, 1396–1401 (2022). https://doi.org/https://doi.org/10.1109/TED.2022.3141337

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Ryskin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 65, Nos. 5–6, pp. 494–504, May–June 2022. Russian DOI:https://doi.org/10.52452/00213462_2022_65_05_494

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryskin, N.M., Torgashov, R.A., Titov, V.N. et al. Studies of Small-Size Millimeter-Wave Traveling-Wave Tubes with Multiple Sheet Electron Beams. Radiophys Quantum El 65, 451–460 (2022). https://doi.org/10.1007/s11141-023-10227-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-023-10227-1

Navigation