Skip to main content
Log in

Influence of the Foucault Currents on Excitation of the Magnetic Field and Dynamics of Formation of Helical Electron Beams in Pulse Gyrotrons

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We have developed a method for calculation of the pulsed magnetic field in a sophisticated system of solenoids powered by time-shifted current pulses. The method served as the basis for analysis of the temporal dynamics of magnetic-field variations both in the region of formation of the helical electron beam, and in the space of its interaction with the microwave field in a relativistic gyrotron. It is shown that at some time instants, the degree of the field nonuniformity in the operating space of the gyrotron can reach 20%. The time interval is found, during which the magnetic field in the cavity is uniform. In the experimental process, this allows one to determine the time instant at which a high-voltage pulse is fed in for generation of microwave radiation. The calculated distributions of the magnetic field are compared with the experimental data. We have also developed a method for calculation of the time evolution of the parameters of a helical electron beam formed by a magnetron-injection gun with a pulsed magnetic field, calculated the velocity distribution in the electron beam, and found the time interval, during which a beam with the parameters acceptable for generation is formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.S.Nusinovich, M.Thumm, and M. I. Petelin, J. Infrared, Millimeter, Terahertz Waves, 35, No. 4, 325–381 (2014). https://doi.org/https://doi.org/10.1007/s10762-014-0050-7

    Article  Google Scholar 

  2. https://www.jastec-inc.com/e_products_wire/

  3. Yu.V. Bykov, A.G. Eremeev, M.Yu.Glyavin, et al., Radiophys. Quantum Electron., 61, No. 10, 752–762 (2019).

  4. M.Yu.Glyavin, V. L.Bratman, Yu. K. Kalynov, et al., in: 19th Intern. Crimean Conf. Microwave & Telecommunication Technology, September 14–18, 2009, Sevastopol, Russia, pp. 214–215. https://doi.org/10.1007/s11141-019-09933-6

  5. J. Singleton, C. H. Mielke, A.Migliori, et al., Physica B, 346, 614–617 (2004). https://doi.org/10.1016/j.physb.2004.01.068

  6. W. Seidel, O.Drachenko, M.Gensch, et al., in: 38th Intern. Conf. Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), September 1–6, 2013, Mainz, Germany, pp. 1-1. https://doi.org/10.1109/IRMMW-THz.2013.6665462

  7. S.Fahy, C.Kittel, and S.G. Louie, American J. Physics, 56, No. 11, 989–992 (1998). https://doi.org/https://doi.org/10.1119/1.15353

    Article  Google Scholar 

  8. https://www.3ds.com/

  9. G. S.Nusinovich, Introduction to the Physics of Gyrotrons, The Johns Hopkins Univ. Press, London (2004).

    Book  Google Scholar 

  10. A.L.Goldenberg, G.G.Denisov, V. E. Zapevalov, et al., Radiophys. Quantum Electron., 39, No. 6, 423–446 (1996). https://doi.org/https://doi.org/10.1007/BF02122390

    Article  ADS  Google Scholar 

  11. L. D. Landau and E. M. Lifshits, Course of Theoretical Physics. Volume 8. Electrodynamics of Continuous Media, Butterworth-Heinemann (1984).

    Google Scholar 

  12. T.Weiland, Electronics and Communications AEU, 31, No. 3, 116–120 (1977).

    Google Scholar 

  13. D.Potter, ed., Computational Physics, J.Wiley (1973).

  14. R. Courant, K. Friedrichs, and H. Lewy, Math. Annalen, 1928. 100, 32–74 (1928). https://doi.org/https://doi.org/10.1007/BF01448839

    Article  ADS  Google Scholar 

  15. M.Yu.Glyavin, A.G. Luchinin, and G.Yu. Golubiatnikov, Phys. Rev. Lett., 100, 015101 (2008). https://doi.org/10.1103/PhysRevLett.100.015101

  16. T. Idehara, H.Tsuchiya, O.Watanabe, et al., Int. J. Infrared and Millimeter Waves, 27, No. 3, 319–331 (2006) https://doi.org/10.1007/s10762-006-9084-9

  17. P.Wang, Z.Deng, Z.Wang, et al., IEEE Trans. Electron Devices, 67, No. 10, 4460–4466 (2020). https://doi.org/10.1109/TED.2020.3018098

  18. M. Witman, E.Avraham, R.Ben-Moshe, et al., IEEE Trans. Electron Devices, 66, No. 11, 4928–4931 (2019). https://doi.org/10.1109/TED.2019.2937884

  19. Sh. E.Tsimring, Radiophys. Quantum Electron., 15, No. 8, 952–961 (1972).

    Article  ADS  Google Scholar 

  20. Sh. E.Tsimring, Electron Beams and Microwave Vacuum Electronics, J.Wiley, Hoboken (2007).

  21. E. V. Ilyakov, G. S.Korablyov, I. S. Kulagin, and N. I. Zaitsev, IEEE Trans. Plasma Science, 26, No. 3, 332–335 (1998). https://doi.org/https://doi.org/10.1109/27.700762

    Article  ADS  Google Scholar 

  22. A. V. Gaponov, V. A. Flyagin, A. L. Goldenberg, et al., Intern. J. Electronics, 51, No. 4, 277–302 (1981). https://doi.org/https://doi.org/10.1080/00207218108901338

    Article  Google Scholar 

  23. V.E. Zapevalov, A. S. Zuyev, V. V.Parshin, and E.A. Serov, in: Proc. 23rd Scient. Radiophys. Conf., May 13–17, 2019, Nizhny Novgorod [in Russian], pp. 107–109.

  24. A. L. Gol’denberg and M. I.Petelin, Radiophys. Quantum Electron., 16, No. 1, 106–111 (1973). https://doi.org/10.1007/BF01080801

  25. V.P. Ilyin, Numerical Methods for Solving Problems in Electrophysics [in Russian], Nauka, Moscow (1985).

    Google Scholar 

  26. P. V. Krivosheev, V.K. Lygin, V.N.Manuilov, and Sh. E.Tsimring, Prikl. Fiz., No. 3, 65–75 (2000).

  27. V. S. Ergakov, M.A.Moiseev, and R. É. Érm, Elektron. Tekhn. Ser. 1. Elektronika SVCh, No. 3, 20–27 (1980).

  28. M.Yu.Glyavin, G.G.Denisov, V. E. Zapevalov, et al., J. Commun. Tech. Electron., 59, No. 8, 792–797 (2014). https://doi.org/https://doi.org/10.1134/S1064226914080075

    Article  Google Scholar 

  29. T. Idehara and S.P. Sabchevski, J. Infrared, Millimeter and Terahertz Waves, 38, No. 1, 62–86 (2017). https://doi.org/https://doi.org/10.1007/s10762-016-0314-5

    Article  Google Scholar 

  30. T. Idehara, S.P. Sabchevski, M.Yu. Glyavin, and S.Mitsudo, Appl. Sci., 10, No. 3, 980 (2020). https://doi.org/https://doi.org/10.3390/app10030980

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. D. Likhterova.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 65, Nos. 5–6, pp. 465–474, May–June 2022. Russian DOI: https://doi.org/10.52452/00213462_2022_65_05_465

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manuilov, V.N., Likhterova, P.D., Ilyakov, E.V. et al. Influence of the Foucault Currents on Excitation of the Magnetic Field and Dynamics of Formation of Helical Electron Beams in Pulse Gyrotrons. Radiophys Quantum El 65, 425–433 (2022). https://doi.org/10.1007/s11141-023-10224-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-023-10224-4

Navigation