Skip to main content
Log in

A Study of Gyrotron Synchronization in the Hard-Excitation Regime on the Basis of the Modified Quasilinear Model

  • Published:
Radiophysics and Quantum Electronics Aims and scope

In this work, we theoretically analyze the gyrotron synchronization by an external harmonic signal. The modified quasilinear model of an externally driven gyrotron, which employs the preliminarily calculated complex function of electron susceptibility, is developed. The main attention is paid to the case where the gyrotron is in the hard-excitation regime. The stability conditions of the synchronization regimes are analyzed and the synchronization regions on the amplitude–frequency parameter plane of the external signal are developed. The regime with maximum efficiency and frequency tuning in the limits of the synchronization band is shown to be attained with a simultaneous variation in the external-action amplitude and frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. S.Nusinovich, Introduction to the Physics of Gyrotrons, Johns Hopkins Univ. Press, Baltimore (2004).

    Book  Google Scholar 

  2. G.S.Nusinovich, M.K.A.Thumm, and M. I. Petelin, J. Infrared Millim. Terahertz Waves, 35, No. 4, 325–381 (2014). https://doi.org/10.1007/s10762-014-0050-7

    Article  Google Scholar 

  3. M. Thumm, IEEE Trans. Plasma Sci., 42, No. 3, 590–599 (2014). https://doi.org/10.1109/TPS.2013.2284026

    Article  ADS  Google Scholar 

  4. M. K.A. Thumm, G. G. Denisov, K. Sakamoto, and M. Q.Tran, Nucl. Fusion, 59, No. 7, 073001 (2019). https://doi.org/10.1088/1741-4326/ab2005

  5. V. S. Ergakov and M.A.Moiseev, Radiophys. Quantum Electron., 18, No. 1, 89–97 (1975). https://doi.org/10.1007/BF01037666

    Article  ADS  Google Scholar 

  6. V. S. Ergakov, M.A.Moiseev, and V. I. Khizhnyak, Radiotekh. Elektron., 23, No. 12, 25912599 (1978).

    Google Scholar 

  7. A. H.McCurdy and C. M. Armstrong, Phys. Rev. Lett., 61, No. 20, 2316–2319. https://doi.org/10.1103/PhysRevLett.61.2316

  8. N. S. Ginzburg, A. S. Sergeev, and I.V. Zotova, Phys. Plasmas, 22, No. 3, 033101 (2015). https://doi.org/10.1063/1.4913672

  9. V. L. Bakunin, G. G. Denisov, and Yu.V.Novozhilova, Tech. Phys. Lett., 40, No. 5, 382–385 (2014). https://doi.org/10.1134/S106378504050034/

    Article  ADS  Google Scholar 

  10. V. L. Bakunin, G. G. Denisov, and Yu.V.Novozhilova, Radiophys. Quantum Electron., 58, No. 12, 893–904 (2016). https://doi.org/10.1007/s11141-016-9663-0

    Article  ADS  Google Scholar 

  11. Yu.V.Novozhilova, G.G.Denisov, G.G.Glyavin, et al., Izv. Vyssh. Uchebn. Zaved., Prikl. Nelin. Din., 25, No. 1, 4-11 (2017).

  12. N. V. Grigorieva, N.M.Ryskin, G. G. Denisov, et al., Radiophys. Quantum Electron., 63, Nos. 5–6, 381–391 (2020). https://doi.org/10.1007/s11141-021-10063-1

    Article  ADS  Google Scholar 

  13. V. L. Bakunin, G. G. Denisov, and Yu.V.Novozhilova, IEEE Electron Dev. Lett., 41, No. 5, 777–780 (2020). https://doi.org/10.1109/LED.2020.2980218

    Article  ADS  Google Scholar 

  14. V. L. Bakunin, Yu.M.Guznov, G. G. Denisov, et. al., Tech. Phys. Lett., 44, No. 6, 473–475 (2018). https://doi.org/10.1134/S1063785018060020

    Article  ADS  Google Scholar 

  15. V. L. Bakunin, Yu.M.Guznov, G. G. Denisov, et al., Radiophys. Quantum Electron., 62, No. 7, 481–489 (2019). https://doi.org/10.1007/s11141-020-09994-y

    Article  ADS  Google Scholar 

  16. M. A. Moiseev and G. S.Nusinovich, Radiophys. Quantum Electron., 17, No. 11, 1305–1311 (1974). https://doi.org/10.1007/BF01042032

    Article  ADS  Google Scholar 

  17. A. B.Adilova and N.M.Ryskin, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelin. Din., 26, No. 6, 781–795 (2018). https://doi.org/10.18500/0869-6632-2018-26-668-81

  18. A. B.Adilova and N.M.Ryskin, Radiophys. Quantum Electron., 63, No. 9, 703–715 (2021). https://doi.org/10.1007/s11141-021-10091-x

    Article  ADS  Google Scholar 

  19. K.A.Yakunina, A.P.Kuznetsov, and N. M.Ryskin, Phys. Plasmas, 22, No. 11, 113107 (2015) https://doi.org/10.1063/1.4935847

  20. N. V. Grigorieva, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelin. Din., 29, No. 6, 905–914 (2021). https://doi.org/10.18500/0869-6632-2021-29-6-905-914

  21. G. S.Nusinovich, X.Chen, O.Dumbrajs, et al., Phys. Plasmas, 27, No. 7, 073103 (2020). https://doi.org/10.1063/5.0010377

  22. A.P. Kuznetsov and S.V. Milovanov, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelin. Din., 11, Nos. 4–5, 16–30 (2003).

  23. M. I.Rabinovich and D. I.Trubetskov, Oscillations and Waves in Linear and Nonlinear Systems, Kluwer, Dordrecht (1989).

    Book  MATH  Google Scholar 

  24. P. S. Landa, Nonlinear Oscillations and Waves [in Russian], Fizmatlit, Moscow (1997).

    Google Scholar 

  25. V. I. Arnold, Catastrophe Theory, Springer-Verlag, Berlin (1992).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Grigorieva.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 65, Nos. 5–6, pp. 406–419, May–June 2022. Russian DOI: https://doi.org/10.52452/00213462_2022_65_05_406

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigorieva, N.V., Ryskin, N.M. A Study of Gyrotron Synchronization in the Hard-Excitation Regime on the Basis of the Modified Quasilinear Model. Radiophys Quantum El 65, 371–383 (2022). https://doi.org/10.1007/s11141-023-10220-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-023-10220-8

Navigation