Skip to main content
Log in

A Study of Generation of Wideband Chaotic Radiation in a W-Band Traveling-Wave Tube with Delayed Feedback

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We study the dynamics of a W-band traveling-wave tube with delayed feedback on the basis of averaged equations and within the framework of three-dimensional simulation by the particle-in- cell method. The system parameters, which are optimal from the viewpoint of the width and uniformity of the chaotic-generation spectrum, are determined. It is shown that the chaotic noise-like radiation sources with the relative spectrum width exceeding 10% can be implemented using the experimentally realized traveling-wave tubes on the basis of a slow-wave system of the winding-waveguide type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.P. Bystrov, E. V.Vashchenko, and V. E. Kuz’michev, Usp. Sov. Radioélektron., No. 5, 35–42 (2018).

  2. J. Li, T.Guo, H. Leung, et al., Sensors, 19, No. 13, 2913 (2019).https://doi.org/10.3390/s19132913

  3. H. Xu, Y. Li, L. Li, et al., J. Eng., 2019, No. 19, 6322–6326 (2019). https://doi.org/10.1049/joe.2019.0162

    Article  Google Scholar 

  4. M. D. Navagato and R. M. Narayanan, NDT and E Int., 104, 19–33 (2019). https://doi.org/10.1016/j.ndteint.2019.02.009

    Article  Google Scholar 

  5. H. J. Shin, R. M.Narayanan, M.A.Asmuth, and M.Rangaswamy, Int. J. Microw. Sci. Tech., 5787895 (2016).https://doi.org/10.1155/2016/5787895

  6. T. Isogawa, T.Kumashiro, H. J. Song, et al., IEEE Trans. Terahertz Sci. Tech., 2, No. 5, 485–492 (2012). https://doi.org/10.1109/TTHZ.2012.2208745

    Article  ADS  Google Scholar 

  7. D.Takehara, M.Endo, T. Ishibashi, et al., in: 43rd Int. Conf. on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), September 9–14, 2018, Nagoya, Japan. https://doi.org/10.1109/IRMMW-THz.2018.8509871

  8. H.-J. Song, N. Shimizu, T. Furuta, et al., Appl. Phys. Lett., 93, No. 24, 241113 (2008). https://doi.org/10.1063/1.3039819

  9. E. Sobakinskaya, V. L.Vaks, N. Kinev, et al., J. Phys. D: Appl. Phys., 50, No. 3, 035305 (2017). https://doi.org/10.1088/1361-6463/50/3/035305

  10. G. Kaddoum, IEEE Access, 4, 2621–2648 (2016).https://doi.org/10.1109/ACCESS.2016.2572730

  11. A. S. Dmitriev, T. I.Mohseni, and K. M. Sierra-Teran, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelin. Din., 26, No. 4, 59–74 (2018).

  12. O.Tarvainen, Y. Kawai, G. D.Alton, et al., Nucl. Instrum. Meth. Phys. Res. B, 261, Nos. 1–2, 1044–1047 (2007).https://doi.org/10.1016/j.nimb.2007.04.143

  13. A.G.Shalashov, E.D.Gospodchikov, and I.V. Izotov, Plasma Phys. Control. Fusion, 62, No. 6, 065005 (2020). https://doi.org/10.1088/1361-6587/ab7f98

  14. U. Jordan, V.E. Semenov, D.Anderson, et al., J. Phys. D: Appl. Phys., 36, No. 7, 861–867 (2003). https://doi.org/10.1088/0022-3727/36/7/315

  15. N. S. Ginzburg, N. I. Zaitsev, E.V. Ilyakov, et al., Phys. Rev. Lett., 89, No. 10, 108304 (2002).https://doi.org/10.1103/PhysRevLett.89.108304

  16. R. M.Rozental, N. I. Zaitsev, I. S. Kulagin, et al., IEEE Trans. Plasma Sci., 32, No. 2, 418–421 (2004).https://doi.org/10.1109/TPS.2004.829831

    Article  ADS  Google Scholar 

  17. R. M.Rozental, S. V. Samsonov, A.A.Bogdashov, et al., IEEE Electron Dev. Lett., 42, No. 9, 1394–1397 (2021).https://doi.org/10.1109/LED.2021.3100605

  18. R. M.Rozental, O. B. Isaeva, N. S.Ginzburg, et al., Izv. Vyssh. Uchebn. Zaved., Prikl. Nelin. Din., 26, No. 3, 79–99 (2018).

  19. R. M.Rozental, I. V. Zotova, N. S.Ginzburg, et al., J. Infrared Millim. Terahertz Waves, 40, No. 2, 150–157 (2019).https://doi.org/10.1007/s10762-018-0561-8

  20. S. Puri, Plasma Phys., 16, No. 6, 517–526 (1974).https://doi.org/10.1088/0032-1028/16/6/004

    Article  ADS  Google Scholar 

  21. A. Hershcovitch and P.A.Politzer, Phys. Fluids, 22, No. 2, 249–256 (1979). https://doi.org/10.1063/1.862566

    Article  ADS  Google Scholar 

  22. S.P. Kuznetsov, Radiophys. Quantum Electron., 25, No. 12, 996–1009 (1982). https://doi.org/10.1007/BF01037379

    Article  ADS  Google Scholar 

  23. A.A.Koronovskii, D. I.Trubetskov, and A. E. Khramov, eds., Methods of Nonlinear Dynamics and the Theory of Chaos in the Problems of Microwave Electronics [in Russian], Fizmatlit, Moscow (2009).

    Google Scholar 

  24. A. S. Dmitriev, ed., Generation of Chaos [in Russian], Tekhnosfera, Moscow (2012).

    Google Scholar 

  25. E.A.Kotyrev and L. E. Pliss, Vopr. Radioélektron., Ser. Obshchetekh., No. 1, 24–38 (1961).

  26. V. A.Kats, Radiophys. Quantum Electron., 28, No. 2, 107–119 (1985). https://doi.org/10.1007/BF01035051

    Article  ADS  MathSciNet  Google Scholar 

  27. A. A. Ivanov, M. S.Nagornyuk, A.E. Smirnov, et al., in: 44th Int. Conf. on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), September 1–6, 2019, Paris, France. https://doi.org/10.1109/IRMMW-THz.2019.8874538

  28. N. S. Ginzburg, R. M.Rozental, A. S. Sergeev, et al., Phys. Rev. Lett., 119, No. 3, 034801 (2017). https://doi.org/10.1103/PhysRevLett.119.034801

  29. N. S. Ginzburg, R. M.Rozental, A. S. Sergeev, et al., Phys. Plasmas, 23, No. 10, 103106 (2016).https://doi.org/10.1063/1.4964918

  30. Z. Song, Z. Fan, Y.Cao, et al., Phys. Plasmas, 27, No. 1, 013110 (2020). https://doi.org/10.1063/1.5124614

  31. M.A.Ansari and M.Thottappan, IEEE Trans. Electron Dev., 67, No. 4, 1814–1818 (2020). https://doi.org/10.1109/TED.2020.2974283

    Article  ADS  Google Scholar 

  32. S. V. Samsonov, G.G.Denisov, I.G.Gachev, and A.A.Bogdashov, IEEE Electron Dev. Lett., 41, No. 5, 773–776 (2020).https://doi.org/10.1109/LED.2020.2980572

    Article  ADS  Google Scholar 

  33. G. Liu, W. Jiang, Y.Yao, et al., IEEE Electron Dev. Lett., 43, No. 6, 950–953 (2022). https://doi.org/10.1109/LED.2022.3169033

  34. T. Thuillier, D. Bondoux, J.Angot, et al., Rev. Sci. Instrum., 89, No. 5, 052302 (2018). https://doi.org/10.1063/1.5017113

  35. V. A. Skalyga, S. V. Golubev, I. V. Izotov, et al., Prikl. Fiz., No. 1, 17–24 (2019).

  36. J.-W. Shi, F.-M. Kuo, T. Chiueh, et al., IEEE Photon. Tech. Lett., 22, No. 11, 847–849 (2010). https://doi.org/10.1109/LPT.2010.2046404

    Article  ADS  Google Scholar 

  37. Y. Sun, Y. Chen, P. Li, et al., IEEE Photon. Tech. Lett., 33, No. 22, 1270–1273. https://doi.org/10.1109/LPT.2021.3117022

  38. H. Forstèn, J. H. Saijets, M. Kantanen, et al., IEEE Trans. Microw. Theory Tech., 69, No. 11, 4689–4696 (2021).https://doi.org/10.1109/TMTT.2021.3104028

    Article  ADS  Google Scholar 

  39. J. Cai, J. Feng, and X.Wu, IEEE Trans. Electron. Dev., 61, No. 10, 3534–3538 (2014). https://doi.org/10.1109/TED.2014.2349651

    Article  ADS  Google Scholar 

  40. S. Bhattacharjee, C. L.Kory, W.-J. Lee, et al., in: The Third IEEE Int. Vacuum Electronics Conf., April 25, 2002, Monterey, USA, pp. 26–27.https://doi.org/10.1109/IVELEC.2002.999242

  41. S.-T.Han, J.-I. Kim, and G.-S.Park, in: The Third IEEE Int. Vacuum Electronics Conf., April 25, 2002, Monterey, USA, pp. 94–95.https://doi.org/10.1109/IVELEC.2002.999278

  42. A. A. Ivanov, Radiophys. Quantum Electron., 59, Nos. 8–9, 648–654 (2017). https://doi.org/10.1007/s11141-017-9731-0

    Article  ADS  Google Scholar 

  43. N. S. Ginzburg, S.P. Kuznetsov, and T.N. Fedoseeva, Radiophys. Quantum Electron., 21, No. 7, 728–739 (1978).https://doi.org/10.1007/BF01033055

    Article  ADS  Google Scholar 

  44. N. M.Ryskin, Radiophys. Quantum Electron., 47, No. 2, 116–128 (2004). https://doi.org/10.1023/B:RAQE.0000035693.16782.94

    Article  ADS  Google Scholar 

  45. M. C. Balk, IEEE Int. Vacuum Electronics Conf., April 22–24, 2008, Monterey, USA, pp. 459–460. https://doi.org/10.1109/IVELEC.2008.4556402

  46. Recommendations MSE-R SM.1755. Characteristics of ultrawideband technology (2006).

  47. N. M.Ryskin and V.N.Titov, Radiophys. Quantum Electron., 44, No. 10, 793–806 (2001). https://doi.org/10.1023/A:1013717032173

    Article  Google Scholar 

  48. M. I.Rabinovich, Sov. Phys. Usp., 21, 443–469 (1978). DOI: https://doi.org/10.1070/PU1978v021n05ABEH005555

    Article  ADS  Google Scholar 

  49. V.Ya.Kislov, Radiotekh. Élektron., 38, No. 10, 1783–1815 (1993).

  50. A. A. Ivanov, M. S.Nagornyuk, A.E. Smirnov, et al., Bull, Russ. Acad. Sci. Phys., 84, No. 2, 184–188 (2020).https://doi.org/10.3103/S1062873820020136

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Rozental.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 65, Nos. 5–6, pp. 382–391, May–June 2022. Russian DOI: https://doi.org/10.52452/00213462_2022_65_05_382

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vilkov, M.N., Ivanov, A.A. & Rozental, R.M. A Study of Generation of Wideband Chaotic Radiation in a W-Band Traveling-Wave Tube with Delayed Feedback. Radiophys Quantum El 65, 349–357 (2022). https://doi.org/10.1007/s11141-023-10218-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-023-10218-2

Navigation