Skip to main content
Log in

Radiation Input/Output System in a Ten-Barrel W-Band Gyrotron-Type Traveling-Wave Tube with Helically Corrugated Waveguides

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We present a version of the radiation input/output system with polarization division of signals and a single oversized window developed for a modification of the gyrotron-type traveling-wave tube (gyro-TWT) with ten helically corugated parallel waveguides, which was proposed earlier and, according to calculations, allows achieveing a pulse power of 200–400 kW in the frequency band 92–98 GHz. The key element of this system is the waveguide converter transforming the TE modes, which escape from each barrel, to a common linearly polarized quasioptical wave beam being a mixture of LP5, n modes of the corrugated waveguide. Spatial separation of the electron beam and microwave radiation takes place at the waveguide discontinuity of the collector insulated from the tube body. The radiation is injected into and ejected from the gyro-TWT via one oversized window. The input and output signals are divided spatially with respect to their polarization on an array of linear conductors. It is shown that using this system and a certain set of external quasioptical mirrors, one can ensure transformation of the output radiation of a gyro-TWT to the mode of an external transmission line (the HE mode of the corrugated waveguide or the TEM mode of the mirror line) with diffraction losses of about 3–4% at the bandwidth center and 12–15%, at its edges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Gaponov, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 2, No. 3, 443–449 (1959).

  2. K. K. Chow and R.H.Pantell, Proc. IRE, 48, No. 11, 1865–1870 (1960). https://doi.org/10.1109/JRPROC.1960.287421

    Article  Google Scholar 

  3. G. S.Nusinovich, Introduction to the Physics of Gyrotrons, Johns Hopkins Univ. Press, Baltimore (2004).

    Book  Google Scholar 

  4. M. Thumm, J. Infr., Millim., Terahertz Waves, 41, No. 1, 1–140 (2020). https://doi.org/10.1007/s10762-019-00631-y

  5. S.V. Samsonov, K.A. Leshcheva, and V.N. Manuilov, IEEE Trans. Electron Devices, 67, No. 8, 3385–3390 (2020). https://doi.org/10.1109/TED.2020.3001491

    Article  ADS  Google Scholar 

  6. G. G. Denisov, V.E. Zapevalov, A. G. Litvak, and V.E.Myasnikov, Radiophys. Quantum Electron., 46, No. 10, 757–768 (2003). https://doi.org/10.1023/B:RAQE.0000026869.75334.a1

    Article  ADS  Google Scholar 

  7. M. Thumm, X.Yang, A.Arnold, and G.Dammertz, et al., IEEE Trans. Electron Devices, 52, No. 5, 818–824 (2005). https://doi.org/10.1109/TED.2005.845791

  8. A. A. Bogdashov and S. V. Samsonov, IEEE Trans. Electron Devices, 67, No. 3, 1221–1226 (2020). https://doi.org/10.1109/TED.2020.2965997

    Article  ADS  Google Scholar 

  9. S.V. Samsonov, A.A.Bogdashov, I. G. Gachev, and G. G. Denisov, Radiophys. Quantum Electron., 62, No. 7, 508–521 (2019). https://doi.org/10.1007/s11141-020-09991-1

    Article  Google Scholar 

  10. G. G. Denisov, S. V. Samsonov, S.V.Mishakin, and A.A.Bogdashov, IEEE Electron Device Lett., 35, No. 7, 789–791 (2014). https://doi.org/10.1109/LED.2014.2325969

    Article  Google Scholar 

  11. S. V. Samsonov, A.A.Bogdashov, G. G. Denisov, et al., IEEE Microwave and Wireless Components Lett., 26, No. 4, 288–290 (2016). https://doi.org/10.1109/LMWC.2016.2537541

    Article  Google Scholar 

  12. G. G. Denisov, A. A. Bogdashov, I. G. Gachev, et al., Radiophys. Quantum Electron., 58, No. 10, 769–776 (2016). https://doi.org/10.1007/s11141-016-9649-y

    Article  ADS  Google Scholar 

  13. S. V. Samsonov, A.A.Bogdashov, G. G. Denisov, et al., IEEE Trans. Electron Devices, 64, No. 3 (2017), 1305–1309. https://doi.org/10.1109/TED.2016.2646065

    Article  ADS  Google Scholar 

  14. S. V. Samsonov, G.G.Denisov, I.G.Gachev, and A.A.Bogdashov, IEEE Electron Device Lett., 2020. V. 41, No. 5, 773–776 (2020). https://doi.org/10.1109/LED.2020.2980572

  15. N. F.Kovalev, I. M. Orlova, and M. I.Petelin, Radiophys. Quantum Electron., 11, No. 6, 449–450 (1968). https://doi.org/10.1007/BF01034380

    Article  ADS  Google Scholar 

  16. A. A. Bogdashov and G. G. Denisov, Radiophys. Quantum Electron., 47, No. 4, 283–296 (2004). https://doi.org/10.1023/B:RAQE.0000047649.17664.6e

    Article  ADS  Google Scholar 

  17. G. G. Denisov, G. I. Kalynova and D. I. Sobolev, Radiophys. Quantum Electron., 47, No. 8, 615–620 (2004). https://doi.org/10.1023/B:RAQE.0000049559.74097.86

    Article  ADS  Google Scholar 

  18. D. I. Sobolev, A. V. Chirkov, G. G. Denisov, et al., Int. J. Infrared Millimeter Waves, 26, No. 7, 953–966 (2006). https://doi.org/10.1007/s10762-005-6168-x

    Article  ADS  Google Scholar 

  19. L.Rebuffi and M.Thumm, in: Proc. 14th Int. Conf. IR and MM Waves, October 2–6, 1989, Würzburg, Germany, pp. 154–155.

  20. G. G. Denisov and S.V. Kuzikov, in: Proc. 20th Int. Conf. IR and MM Waves, December 11–14, 1995, Lake Buena Vista, Orlando, Florida, USA, pp. 297–298.

  21. M. Thumm, Int. J. Infared Millim. Waves, 6, No. 7, 577–597 (1985). https://doi.org/10.1007/BF01009672

    Article  ADS  Google Scholar 

  22. J. Kennedy and R.Eberhart, in: Proc. Int. Conf. Neural Netw., Vol. 4, November 27–December 1, 1995, Perth, Australia, pp. 1942–1948. https://doi.org/10.1109/ICNN.1995.488968

  23. P. Clarricoats and P. Saha, Electron. Lett., 6, No. 12, 370–372 (1970). https://doi.org/10.1049/el:19700260

    Article  ADS  Google Scholar 

  24. P. J. Clarricoats and A. D. Olver, Electron. Lett., 9, No. 16, 376–377 (1973). https://doi.org/10.1049/el:19730278

    Article  ADS  Google Scholar 

  25. A. A. Bogdashov, G. G. Denisov, S. V. Samsonov, et al., Radiophys. Quantum Electron., 58, No. 10, 777–788 (2016). https://doi.org/10.1007/s11141-016-9650-5

    Article  ADS  Google Scholar 

  26. E.Kowalski, D.Tax, M. Shapiro, et al., IEEE Trans. MTT, 58, No. 11, 2772–2780 (2010). https://doi.org/10.1109/TMTT.2010.2078972

    Article  Google Scholar 

  27. D.Wagner, M.Thumm, K. Kasparek, et al., Int. J. Infrared Millim. Waves, 17, No. 6, 1071–1081 (1996). https://doi.org/10.1007/BF02101439

    Article  ADS  Google Scholar 

  28. J.Robinson and Y.Rahmat-Samii, IEEE Trans. Antennas Propag., 52, No. 2, 397–407 (2004). https://doi.org/10.1109/TAP.2004. 823969

    Article  ADS  Google Scholar 

  29. A. A. Bogdashov and Y. V.Rodin, Int. J. Infr. Millim. Waves, 28, No. 8, 627–638 (2007). https://doi.org/10.1007/s10762-007-9248-2

    Article  ADS  Google Scholar 

  30. R. C. Eberhart and Y. Shi, in: Proc. IEEE Congress Evolutionary Computation, July 16–19, 2000, San Diego CA, USA, pp. 84–88.

  31. B. Z. Katzenelenbaum and V.V. Semenov, Radiotekh. Élektron., 12, No. 2, 244–252 (1967).

    Google Scholar 

  32. A. A. Bogdashov, A. V. Chirkov, G. G. Denisov, et al., Int. J. Infr. Millim. Waves, 16, No. 4, 735–744 (1995). https://doi.org/10.1007/bf02066633

    Article  ADS  Google Scholar 

  33. B. Z. Katzenelenbaum, Radiotekh. Élektron., 8, No. 9, 1098–1106 (1963).

    Google Scholar 

  34. E. Marcatili, in: Proc. Symp. Quasi-Opt., June 8–10, 1964, New York, USA, pp. 535–542.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Bogdashov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 65, Nos. 5–6, pp. 370–381, May–June 2022. Russian DOI: https://doi.org/10.52452/00213462_2022_65_05_370

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogdashov, A.A., Samsonov, S.V. Radiation Input/Output System in a Ten-Barrel W-Band Gyrotron-Type Traveling-Wave Tube with Helically Corrugated Waveguides. Radiophys Quantum El 65, 338–348 (2022). https://doi.org/10.1007/s11141-023-10217-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-023-10217-3

Navigation